
1. Introduction (2-3 paragraphs):

The opening section describes the document’s purpose and a preview of what it contains.
You will also provide an overview of the primary technical tasks you were assigned by your
project partner.

NOTE: Please use Section 2 or 3 of this paper to address topics like technical debt and the
restrictions that were placed on you by project partners. (Technical debt might be thought
of the lower quality technical solutions you or a previous team implemented for a
short-term deliverable where a better technical solution would take longer and therefore
be more costly.)

In the past few decades, humans have developed rapidly in the computer science field,
which has also led to a large number of research and application development of data
collection, storage, and analysis technologies, which greatly reduces the cost, time, and time
of data processing. An era of "big data" is gradually unfolding before us.

Once, boring data and statistics were only the concern of a few mathematicians,
statisticians, and economists. The innovation of science and technology and the revolution
of data have made it possible for people to process massive amounts of data, and it has
become more and more convenient and effective. This has attracted a large number of
people across professional disciplines to invest in the development and application of big
data. In this era of background, it will help our team develop innovative data visualization
technology.

From a certain perspective, data visualization is the same as machine learning. Both are
tools for data analysis, but from a different perspective. Machine learning (ML) uses
different models to list the characteristics of the analyzed data (data sets) from the
perspective of the model; data visualization is from the perspective of images, such as bar
graphs, allowing users to quickly understand the differences between different data (data
sets). Its essence is to allow blunt data to talk to human vision. Data visualization uses
graphical means to convey and communicate information clearly and effectively.

The ability to efficiently assess the efficacy of a data visualization is at the core of this
project. When a data visualization designer creates a visualization, they are not always
certain that people are able to understand the data that is being portrayed. Sometimes data
visualizations are very hard to comprehend, or lead readers or customers to the wrong
conclusions. To get an idea of the efficacy of a data visualization, data visualization
designers like to receive feedback on their designs. One of the ways that this can be done is
by using a survey taking platform that allows a data visualization designer to pay for survey
takers. However, the process for receiving feedback from data visualizations is a manual
intensive process, which is in need of automation. Previously, a data visualization designer
would have to go through the manual process of creating a survey through Qualtrics,
exporting the survey, and uploading it to a service such as Amazon MTurk that would
collect feedback from a specified sample of survey takers. The data from the feedback

would then need to be analyzed to determine how effective the data visualization was in
conveying information. A survey would therefore consist of questions related to identifying
data points in the data visualization or asking questions that give the designer a good
understanding of how many people are able to quickly understand the data being
portrayed. This entire process is attainable when there is a small number of data
visualizations that need to be processed, but fails to scale for a large number of data
visualizations.

In order to automate the feedback collection process for data visualizations, an automated
process needs to be created. The goal of this project is to create a website where designers
can go to upload their data visualizations with their surveys, which are sent automatically
to Amazon MTurk, the survey platform. The data visualization designer would be able to
specify how many survey responses they would like, as well as other criteria such as age or
demographics. Once the surveys have been completed, the data visualization designer
would get a notification and could then view the results of the survey. The data
visualization designer would also be able to check on the progress of the surveys, indicating
a need to interface with Amazon MTurk to retrieve the current progress every time a user
would like to check. Finally, the data visualization designer would be able to run a set of
statistical tests on the returned data to get an understanding and interpretation of the
survey results. From here, the data visualization designer could make adjustments to their
creation and make modifications to make a more effective visualization. For the time being,
the combination of a website and servers used for processing survey results would be the
extent of the capstone project and would be provided as a service. The project is likely to
start internally for OSU as a service available to students or professors, but has the ability to
expand as a service available to the public as well.

Link of example dataset: https://www.unb.ca/cic/datasets/ids-2017.html

Dataset description:
Intrusion Detection Evaluation Dataset (CIC-IDS2017). It is provided by Canadian Institute
for Cybersecurity.

This dataset contains benign and the most up-to-date information of common network
attacks, which are similar to the ture real-world data (PCAPs). What's more, the result of
network traffic analysis, source and destination IPs, source and destination ports, protocols
and CSV files are also included.

2. Tools and Technical Approaches (about one paragraph per tool or technical
approach):

In this section, you will want to review the tools and technical approaches you
implemented to address the technical tasks mentioned in the Introduction. What tools did
you use? What is your satisfaction with the tools? What other choices did you wish you had

made or explored? How would they have helped or hindered progress? Would you choose
the same tools and technical approaches again? If not, what would you do instead? Testing:
What sort of testing framework are you using? (etc.)

Tools and Frameworks

A. Auth0

Auth0 was the third party service we used for user accounts. Auth0 provides a login,
sign up and password reset page all out of box which was largely beneficial in
speeding up the development process. Overall we have been very satisfied with the
service, as it provides an easy way to also store metadata with each user that we use
to store survey specific information, thus avoiding the need to store this information
in the database. If we were to look at the project again, we would probably look
more closely at Firebase, however we felt that it made more sense to use Auth0 as it
provided a few more UI components that were useful. Additionally, we would need a
google account for Firebase which makes it harder to maintain for the project
partner.

B. .NET Core

.Net Core and C# is part of our application stack for the site. It is a framework
maintained by Microsoft that is cross platform and allows for the deployment of
both console and web applications. The project partner had a requirement at the
beginning of the project that the website should be written in a stack that they were
familiar with and .NET was one of them. .NET Core has advantages such as its cross
platform capabilities which is a huge advantage for this project. Considering that the
final application will be deployed to school managed servers, there is a possibility
that the school changes the types of servers that they make available. Therefore, it is
useful to have an application that can run on Linux or Windows and would only
require a changing of the deployment specification. For this application, we also
created a monolith, with the backend and frontend being deployed in the same
application. Although there is a rather strong push in industry to move away from
monoliths of this type, the lack of direct access to the production servers makes it
beneficial to reduce the complexity of the deployment configuration and the number
of moving parts.

C. Qualtrics API

The Qualtrics API is what is used to create the surveys behind the scenes. The
Qualtrics API has documentation that is not very user friendly and can sometimes be

confusing. Unfortunately, there are not many platforms that can support the
expansive features that Qualtrics supports, and therefore is very essential to the
project in its current capacity. For this project in particular, Qualtrics is used to
present a random visualization from the set of visualizations that the designer
submitted to the survey taker. This allows the data visualization designer the ability
to see which design is the most effective by asking each survey taker the same
questions but alternating the design shown to them .

D. Github

Github is used to store the codebase and keep track of changes across multiple
branches and team members. To add a new feature to the main branch, a group
member will first need to create a separate branch and commit changes on that
branch. Then, the group member can create a pull request from that branch into the
main branch. We created a CODEOWNERS file that requires that a member of the
group other than the pull requester review and approve the code that is being
brought into the main branch. Although we are not able to practice all aspects of
extreme programming, having other group members review code changes will be a
way for the entire team to stay up to date on code changes. The repository also does
not allow anyone to push changes directly to the main branch, which ensures that
we do not have any accidental pushes into our repository. Once a pull request has
been approved, the pull requester can then go ahead and merge the pull request
using the git squash command. The git squash command will help keep the main
branch clean of unnecessary commits and will be useful for tracking all of the
commits related to a feature. Once a pull request is made, the team is notified via
discord that a pull request is open. In order to update the discord server for the
notifications, a new web hook integration with Github would need to be set up in the
new discord server.

E. Bootstrap 4 and JQuery

Our project made use of Bootstrap for styling the frontend and JQuery for
simplifying the use of javascript on the frontend. Bootstrap comes with a flexbox
based grid system and CSS classes that are used for styling in our HTML.
Additionally, JQuery was used to implement dynamic actions on certain pages and
communicate to the backend using AJAX without needing to refresh the page.
Overall both of the libraries were easy to use and helped reduced the time spent on
styling simple components of the application. The project partner also had a hand in
picking which bootstrap theme we would be using in our website. Specifically
Andrea Marks, who is a design professor here at Oregon State, has been very helpful
in choosing a theme that has a “look and feel” which matches our project as a whole.

Figure 1: High Level Backend Overview

A. Collecting Survey Data
In the above diagram, the entire process for the project is described, including stretch goals.
The process begins in the client, in this case the website. The user submits a survey on the
website with their questions, possible answers, correct answers and data visualizations.
Once the survey is submitted, the application API receives the survey and communicates
with Qualtrics via the Qualtrics API. To generate a Qualtrics survey using the Qualtrics API a
survey block needs to be created. Each question will reside inside of each survey block,
along with the possible answers to the questions which will be done in each subsequent
request to the Qualtrics API. Once the survey is created in Qualtrics, the Qualtrics API will
send back a survey link which the application API will provide to the client.

B. Mapping Users to Surveys
The application API will send the survey link to the database where a user map to the
survey link will be created. This will involve a database with a table of users and a
many-to-many relationship with a table of surveys. Since we cannot assume that survey
links will be unique, we will need to create the join table between the survey entity and the
user entity which will keep track of the survey link of the survey that the user is associated
with. Users will be identified by a unique string that is returned by Auth0, allowing the
application to identify who is logged in and which surveys belong to them. The reason that
this added flexibility is needed is for the future uses of the application, that may need
multiple survey links that all point to the same survey.

C. Saving Survey Responses
At this point, the application API sends the survey link to a platform such as Amazon MTurk
where workers can take the survey using the link. The survey responses will save to
Qualtrics from the survey link. Once the application API detects that the survey responses
have been recorded, the application API will allow the user to download the survey results
as a CSV from the website. The detection process will likely involve polling for updates,
unless either the survey crowdsourcing platform allows a webhook or call back or Qualtrics
provides a programmatic mechanism to determine when a sufficient number of responses
have been recorded.

D. Database Considerations
Since we need the ability to determine which users submitted which surveys, a database
mapping between users and a unique survey key is needed. This database process will also
allow the application API to query the Qualtrics API with the survey key to retrieve results
for the survey. This would allow us to make survey results available for download from the
website. As seen in Figure 2, there is a user table with a single column of id. This id column
serves as the identification column, and is not auto incremented. When a user creates a
survey, the user’s GUID will be retrieved from Auth0, and compared to the existing GUID’s
in the system. If the GUID is not found in the database, then the GUID will be added. If the
GUID is found then we move to the UserSurveys table which is the join table between the
survey entity and the user entity. The UserSurveys table will have an auto generated
primary key, and will have a foreign key from the User table and the Survey table. Finally,
the last column will contain the survey link for the survey. The Survey table will contain a
unique identifier for the survey that will be retrieved from Qualtrics when the survey is
originally created.

3. Project Management (2-to-3 paragraphs):

This section is an autopsy of the group's management. How did you divide up the
responsibilities for completing all the tasks of the project? Knowing what you know now
how would you approach the project and tasks differently? When were members of the
team idle and not working? Where was time wasted? How would you assign sprint tasks
differently if you were to start over? What problems have you had with integration, and
how did you overcome them? Were there any logistical problems? What kind of planning
would have made things go more smoothly? Where did you go to acquire necessary
knowledge or resources?

Responsibilities were split up by focus area. We divided the team into backend and frontend
focused, which helped with deciding who should get which task. Each week met on
Wednesdays to partake in our sprint meetings. During the start of our sprint we hosted a
sprint planning meeting which involves creating user stories and adding them to the

backlog. Then, we chose a certain number of items that we could complete by the next
sprint. During each subsequent week we had a check-in meeting to discuss sprint progress
and alleviate any roadblocks. During the final week of the spring we had a sprint
retrospective to reflect on how the sprint went.

A scrum master was selected for each sprint, during the final sprint meeting of the previous
sprint. The scrum master was responsible for conducting the sprint ceremonies and
keeping documentation for the sprint. We used a Trello board to track our sprint progress,
and the information in our sprint backlog was stored there. The scrum master was
responsible for updating the sprint documentation in the code repository with the different
user stories that were completed as well as who completed them. In Trello, each member of
the team was able to assign themselves to a card and update the status of the card at any
time, which helps the scrum master identify which user stories need additional attention.

4. Advice and Recommendations (about one paragraph per recommendation):

What recommendations would you have offered your project partner at the beginning of
the project had you been able to do this over? What advice would you give to a team who
would be inheriting your project?

We need to continue to maintain an optimistic and respectful working relationship. Under
ideal conditions, this can ensure that we have a good attitude of active cooperation.
Everyone is good at different programming languages, which leads to the way in which
everyone’s thinking is processed, so we all need to study and understand patiently, so that
we can integrate everyone’s code together and make an excellent project. What's more, we
will continue to cooperate in the spring term, continue to maintain weekly meetings, and
code sharing. I hope everyone in the team will have good luck in their study and life in the
next term.

