COLLEGE OF ENGINEERING

WHITE HAT'S TEAM:

WHITE HAT SECURITY RESEARCH WEB APP [P

Banks Cargill-cargillb@oregonstate.edu

Frederick Eley-eleyf@oregonstate.edu

Timothy Glew-glewt@oregonstate.edu

INTRODUCTION

Almost everything we do in our lives
involves the web, making cyber
security a major concern for everyone,
yet, according to Security Magazine, a
website is hacked every 39 seconds.

Our project seeks to enable students
understanding of the most common
web application vulnerabilities in
addition to guiding them through a
method of defense to encourage
aspiring coders to develop security
conscious habits. The web app
vulnerabilities we focused on are
defined by OWASP’s Top Ten list.

OWASP is an online community that
produces free materials specific to the
field of web application security. The
Top Ten details web application security
risks that represent a critical security
risks to web applications.

Every day more and more of our daily
activities move to the web, a trend that
has recently been accelerated by the
COVID-19 pandemic forcing
individuals, businesses and students
alike to rapidly transition. As we make
this transition, our data and sensitive
information is being held by databases
and web applications.

Web design and application
development is covered in depth by the
required undergraduate courses for
those majoring in computer science;
however, without actively pursuing
information about security, many
beginner websites and applications
suffer from major vulnerabilities, not
just from malicious attacks but from
Uuser error.

Oregon State

Deploy and secure a web application through iterative research,
penetration testing, and detense guided by OWASP top ten.

How to Attack our Site:
Tautological Injection - Login

At the login page, you'll need to enter text into the username and password to bypass the form
requirement. At the end of the password entry add: ' OR user_id like %%

This will make the query read as:

SELECT * FROM users WHERE username = ‘yourinput’ AND pword =
‘vourinput' OR user_id like %%’

This will return all rows from the ‘users’ table with a user_id. Because the front end of the web
application assigns the user information based on the first row, you will be logged in as if you
were the first returned user_id.

This attack is based on the assumption that the attacker can guess a name for the property that
holds the user's id. Since most databases we have seen use “user_id” or “id", we felt this was a
safe assumption to make.

Once you have logged in and proven both that user _id is a property of the user table and the
injection works, you can now play with different user _id's and log in as different users.

For example:

‘"OR user_id = '2

\ )

f —

Details of the defense are
provided with comparisons of
the code between our
insecure and secure sites.

The tutorials provide specific examples of
manipulating the site to demonstrate the
vulnerability. This encourages users to
experiment and find different ways to
manipulate the site.

DESCRIPTION

« We've implemented two instances of a basic to-do list web application, an
insecure and secure version. Tutorials are available on the insecure site
that detail each vulnerability, how a user can attack the insecure site, and
how we have defended against those attacks on the secure site.

« Qur sites are built with Flask, a micro web framework written in Python, and a
MySQL database server. The sites are hosted through Heroku, a cloud application
platform the provides free hosting services. We chose these platforms due to
their general accessibility to make the findings valuable to a broad audience.

« All our source code is hosted on GitHub. While many code snippets directly related
to vulnerabilities are included in our tutorials, users are encouraged to reference
our codebase to increase their understanding of the vulnerabilities covered by
seeing how the different pieces interact with each other.

 While there exist many online resources that discuss web application
vulnerabilities and provide isolated examples, our goal with this project is to
create a resource where all this information is centralized, and presented in an
environment where coders who are interested in learning about web security can
quickly apply what they read to see the impact.

How to Defend our Site:

~ Tautological Injection - Login

For our vulnerable site, we wrote the query so that if a user knew a valid username and a valid
password that would return a single row from the database, they could login. We changed this
s0 that the database was queried solely from the username input. Since usernames must be
unique, this will only return one row from the DBE. We then check the user’s input for their
password against the DB's returned password. If they match, the useris logged in.

To further protect against users injecting queries, we created a stored procedure. A stored
procedure is a type of parameterised query. A stored procedure writes the query beforehand
and earmarks the locations where data will later be supplied. This clearly differentiates what is
part of the query, and what is data to be used in the query, that the database understands. This
prevents injected queries from being run because any query that someone attempts to inject will
be interpreted as data rather than as a query.

Insecure: Dynamic Query Construchion

Secure; Stored FProcedure

1 = CREATE DEFINER="ad4dp6xjzijGogrgmu @ % PROCEDURE “returnUserInfo” (IN uname varchar{28))
. BEGIN

3 SELECT * FROM users WHERE username = unamej

- END

Secure: Call to Stored Procedure

Secure: Cross Valdation of User Input Password and DB-stored Password

VULNERABILITIES COVERED

« SQL Injection

- Broken Authentication

« Sensitive Data Exposure

- Broken Access Control

» (Cross-Site Scripting (XSS)

« Insufficient Logging and Monitoring




