
Team 38 Smart Phone Repair 
Manual Code Review
Soren Andersen, Nowlen Webb, Claire 
Swanson 



What It Is Step-by-step how to guides 
using augmented reality to 
show users what they should 
be interested in. 



Tools Used 
Overview

● iOS Platform
a. Apple devices with camera and ARKit support

i. Tested on iPhone 6s and iPhone 8
1. Compatible with iPhone 6s and 

newer
b. MacinCloud

i. Testflight
● Programming

a. Swift/Xcode 12
i. ARKit 3

1. Image recognition 
b. Parse 

i. Swift SQL Package
c. Began with  Python SciKit



Functional Diagram



Demo of 
functionality

http://www.youtube.com/watch?v=lsouqoKdfzs


AR Overview To understand the bulk of the app, we first 
need to explain how the image recognition 
system through ARKit 3 works. When correctly 
configured with an AR screen view such as the 
one on the left here, the view is essentially just 
a view of the phone’s camera. While we do not 
see everything that is going on in the 
background, the camera is no ordinary camera 
as it is creating key tracking points to judge the 
positional relationship between each object in 
frame. This idea is best exhibited by the GIF 
currently playing in which the user has what 
Apple calls “feature points” which are just 
inflection points turned on. In our case because 
we are using ARWorldTracking as our AR 
configuration our camera is simply waiting 
something it recognizes. 



AR Configuration What can it recognize? Good question, after 
declaring the type of AR config we then bind a 
group of reference images in the form of an AR 
Resource group. An AR resource group is a 
folder of photos with measurements tied to 
each photo. These folders sometimes contain 
a single photo or many, however these 
resource groups are important to manage as 
Apple has a hard and fast cap on these folders 
with the limit being 24 photos. The larger these 
folders get the more time the phone spends 
judging each picture against its current image 
input and it quickly takes a huge toll on 
performance. With all that being said we are 
simply giving the AR config photos and 
measurements for it to recognize, and when it 
does we get sent to the renderer function.



3 Types of Node

● Nodes Used
○ Text
○ Image 

(Arrow)
○ Plane

The renderer function allows us to place 3d 
objects around the scene. Once the renderer 
function is called a central node called an anchor 
is placed at where the camera recognizes the 
photo. This anchor acts as the center of a new 
system of coordinates, which allows us to have a 
reference point to place nodes from. A node is 
simply an object in 3d space relative to the 
anchor. Nodes have a few simple characteristics: 
they require a point in 3d space relative to the 
anchor, a geometry type, and a material type. 
The paradigm behind these nodes is to separate 
by geometry as that represents the 3d object 
being presented. For our project we found the 
most useful types to be text, image, and plane. 
Although there are some more visually 
impressive geometries that come in ARKit, we 
found that along with the constant image 
recognition larger 3d shapes worsen 
performance. Ultimately the renderer function is 
the core of the AR tracking as it allows us to 
interact with the world through placing objects.



Nodes Improved Although AR Kit 3 is doing a lot of the work 
through its calculations, right of the box image 
recognition and placing nodes is cumbersome 
and time consuming and with our plans to build 
an instructional app we would have to do this 
frequently. To make things more efficient we 
designed the ImageInfo class to describe a 
single image in an AR resource folder and the 
corresponding 3d objects to be placed around 
it. Then we added functions to the renderer to 
allow for standardization of these 3d objects 
such as the text node function you see on 
screen which simply takes in the width of the 
object recognized that the renderer function 
provides and the text we want displayed.



Loading Instruction 
Data

Once we had a standard way of placing objects 
by creating nodes based on the image found, 
we could move onto to creating full instruction 
sets. Each instruction set is simply a .json file of 
type InstructionText which consists of all the 
ImageInfo objects in the relevant AR resource 
folder and 2 different text variables. Each of 
these objects represent an entire step in our 
WalkThru. Each time a user clicks on a 
WalkThru on the library screen, the relevant 
.json is read into the AR view controller. This 
setup drastically reduced the amount of time it 
takes to create one WalkThru while also 
decreasing the complexity from needing to  
create a new AR view controller for each 
WalkThru to simply needing a formatted .json 
and the corresponding AR resource groups. 
Although we tried to make it as simple as 
possible, creating a single WalkThru still takes a 
while as the requirement of creating AR 
resource groups with cropped photos and 
measurements is time consuming.



User Stories

● As a mechanic, I need a simple user interface so that I can 
follow the guide as I complete the job.

● As a user, I need the AR coloring to be clear enough to see 
each part I am supposed to manipulate so I can quickly 
complete the project.

● As a user, I need the object I am working on to be recognized 
so I can work on the project from most angles I want.

● As a user, I need to see markings on video of parts so that I 
can know what the next step is and avoid confusion.


