
Mobile Cryptographic Coprocessor for Privacy-Preserving Two-Party Computation

By
Gabriel Kulp

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Associate)

Presented May 28, 2021
Commencement June 2021

AN ABSTRACT OF THE THESIS OF

Gabriel Kulp for the degree of Honors Baccalaureate of Science in Computer Science
presented on May 28, 2021. Title:
Mobile Cryptographic Coprocessor for Privacy-Preserving Two-Party Computation

Abstract approved:

Mike Rosulek

Multi-party computation (MPC) is a field of study focused on devising crypto-
graphic protocols that allow participants to learn the output of some function of their
private inputs without trusting a third party to perform the computation. This is
usually done at a large scale between data centers, with little emphasis on individuals’
devices or mobile hardware. In this paper, I present a proof-of-concept implementa-
tion of two-party computation on a commodity smartphone paired with a low-power
field-programmable gate array (FPGA). I compare the performance and power con-
sumption of the system between a software-only setup and a setup with the FPGA
coprocessor used for acceleration. I find a calculated 62× speed improvement assum-
ing a saturated serial connection, and no significant difference in the smartphone’s
battery life.

Key Words: MPC, Garbled Circuits, FPGA, Cryptography, IceStorm

Corresponding e-mail address: kulpga@oregonstate.edu

©Copyright by Gabriel Kulp
May 28, 2021

Mobile Cryptographic Coprocessor for Privacy-Preserving Two-Party Computation

By
Gabriel Kulp

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Associate)

Presented May 28, 2021
Commencement June 2021

Honors Baccalaureate of Science in Computer Science project of Gabriel Kulp
presented on May 28, 2021.

APPROVED:

Mike Rosulek, Mentor, representing Computer Science

Vincent Immler, Committee Member, representing Computer Science

Rakesh Bobba, Committee Member, representing Computer Science

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of
Oregon State University Honors College. My signature below authorizes release of
my project to any reader upon request.

Gabriel Kulp, Author

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Scope . 3

2 Background 4
2.1 Boolean Circuits . 4
2.2 Oblivious Transfers . 5
2.3 Garbled Circuits . 6
2.4 Yao’s Garbled Circuits . 9
2.5 Improvements on the Protocol 10

2.5.1 Permute and Point 10
2.5.2 Row Reduction . 11
2.5.3 Free XOR . 11
2.5.4 Beyond . 12

2.6 Encryption . 13
2.7 Field-Programmable Gate Arrays 13

3 Approach 16
3.1 Algorithm . 16
3.2 Protocol . 16
3.3 Software . 17

3.3.1 Oblivious Transfer 18
3.3.2 Advanced Encryption Standard 18
3.3.3 Garbler . 18
3.3.4 Evaluator . 19

3.4 Hardware . 19
3.4.1 Execution . 20
3.4.2 Pipelines and Memory 21
3.4.3 Limitations . 22
3.4.4 Scalability . 22

4 Results 23
4.1 Speed . 23
4.2 Power Efficiency . 24

5 Conclusion 26

1

1 Introduction

1.1 Motivation

Multi-party computation (MPC) solves problems that are otherwise impos-
sible without trust. The classic example[1] is that two millionaires at a
party want to find out who has more money, but they don’t want to divulge
how much money they have. They could whisper in the butler’s ear, but
he might tell someone later or give the wrong answer, so they’d rather not
trust anybody. MPC allows them to answer their question without trusting
each other or the butler.

A real example from Denmark in 2008 involved the process of finding
a fair price for sugar beets after EU market changes: for each potential
price, the buyer specifies how much they are willing to buy and the seller
specifies how much they are willing to sell. The “market clearing price”
is then derived from a computation on these data. While this could have
been done via a trusted party, the single Danish sugar beet buyer and the
farmer’s union were not suitable choices, and hiring a consultant would have
been too expensive. The solution was to perform a multi-party computation
such that the optimal price could be determined without the buyer or sellers
revealing private information.[2]

In the modern cloud-computing model, providers compute on client data
using proprietary algorithms. When clients send data to be processed, it is
also available to the service provider for logging and analysis. This violation
of privacy serves as a building block of the world of commercial IoT, cloud
services, and centralized machine learning. MPC provides a cryptographic
solution to this problem, removing the need to share data or trust a third
party, while still computing the same results.

Support for efficient MPC in mobile devices could open the doors to
many other privacy- and security-focused improvements to how our com-
puters communicate. For example, a user could evaluate a pre-trained ma-
chine learning model without revealing their data to the service provider
and without the service provider revealing their model[3]. This would, for
example, allow a user to take a photograph and have it classified by a pri-
vate algorithm without providing the image in the clear to the owner of the
algorithm.

One obstacle to widespread adoption of MPC is the poor efficiency of
execution. The protocol’s cryptographic overhead slows the computation
by several orders of magnitude (see Sec. 2.3). To address this, I propose a

2

coprocessor to accelerate the client’s workload. This coprocessor is attached
to a smartphone to handle the most power-hungry aspects of the calculation
more efficiently than the phone’s built-in processor. In theory, this technique
could be used to make MPC a common task in the same way that other
cryptographic operations (like encrypting and decrypting TLS traffic) are
widespread and efficient.

1.2 Scope

In this thesis, I explain Yao’s Garbled Circuits, which is an MPC protocol
for only two parties. I then implement this algorithm in software, and com-
pare its execution time and power consumption to a second, interoperable
implementation in which the smartphone interfaces with a custom copro-
cessor. It is out of scope to draw comparisons to other implementations or
design a practical user interface.

I will not perform hardware modifications to the smartphone, nor design
a new device as a stand-in; this limits the throughput of the data link
between the smartphone and the coprocessor prototyping device, called an
FPGA or “field-programmable gate array.”

The coprocessor architecture is restricted by the small and low-power
FPGA chip selected for its open-source[4] compatibility. More details on
these design decisions are in Sec. 3.4.

3

2 Background

In this section I’ll provide a self-contained explanation of Yao’s Garbled
Circuits.

Multi-party computation, or MPC, is a kind of cryptographic protocol
where several people send some messages back and forth. The point of an
MPC protocol is to compute the output of some function on private inputs
held by each party, but without those parties needing to share their inputs.
If you could trust someone to do the computation and keep everyone’s inputs
secret, then the calculation would be easy. MPC removes the need to trust
other parties.

Multi-party computation can refer to any kind of computation involv-
ing any number of parties (greater than one). In this paper, I focus on
one protocol under this umbrella, Yao’s Garbled Circuits, which performs
computations between two parties by evaluating a Boolean circuit.

2.1 Boolean Circuits

A Boolean circuit is a collection of logic gates connected together by wires.
Each wire receives a label, with the computation’s inputs assigned to the
wires on the left. Each gate then compares the labels on its inputs to the
gate’s own lookup table to determine what label to assign to its output
wire on the right. The contents of the lookup table determine how the gate
behaves, and we give names to several common sets of table contents. For
example, if 0 and 1 are the possible labels for each wire, and correspond to
False and True respectively, then Tab. 1 shows an AND gate, an XOR gate,
and another AND gate, left-to-right.

Circuits like these can compute any mathematical expression. (For usage
in MPC, circuits can’t have loops, so any looping algorithm will need its

A

B

C

D

E

Figure 1: An example Boolean circuit with one XOR gate
and two AND gates. The inputs wires are on the left columns
and the outputs are on the right column.

4

loops unrolled first.)

A B C A C D C B E

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0
1 0 0 1 0 1 1 0 0
1 1 1 1 1 0 1 1 1

Table 1: Truth tables for the gates in Fig. 1. Each column
is labeled to match a wire and each row matches an input
combination to an output value.

To perform a computation with a circuit, you need to evaluate it. First,
assign input labels to the wires on the left. Then, for each gate with all
inputs labeled, check its truth table to determine which label to give the
output wire. Note that gates are referred to by their output wire. Continue
until all of the output wires are labeled, and then interpret those final labels
for the result. For example, if every wire is labeled either 0 or 1, then the
input to the circuit can be determined by applying the binary representation
of a number, one bit at a time, to each wire. Similarly, the output labels
can be concatenated as bits of the output number.

The Boolean circuit shown in Fig. 1 is too small to have much practical
use. For comparison, even simple math operations like multiplication and
square roots can require tens or hundreds of thousands of gates[5].

2.2 Oblivious Transfers

An oblivious transfer is a cryptographic primitive used in garbled circuits. It
allows Bob to make a choice about which item to receive from Alice, without
Alice knowing which item Bob chose, and without Bob learning anything
about the item he didn’t choose[6].

You can picture this as Bob sending Alice two empty boxes, labeled 0 and
1, shown in Fig. 2. Alice puts messages in each box, locks them, and sends
them back, but Bob only made the key to box 1, a choice he made up-front
before sending anything to Alice. Alice doesn’t know which message Bob
got, since the locks on the boxes look the same to her. Bob doesn’t learn
anything about the other message since the cryptography involved prevents
the possibility of Bob creating two functional keys.

5

Bob Alice

0 1

1

“ψ”

0

“π”

1

0

???

1

“ψ”

1

Figure 2: The oblivious transfer, shown with locks and
boxes. Bob sends alice two empty boxes, one of which he
has already decided he will be unable to open. Alice places
different items into each, and sends them back to Bob. Bob
opens the box he selected earlier. Alice does not know which
item Bob received, and Bob knows nothing about the item
he didn’t receive.

2.3 Garbled Circuits

Boolean operations are represented by tables, but these tables don’t have
to map Trues and Falses, and in fact the outputs don’t have to match the
inputs at all. For example, in Fig. 1 and Tab. 1, wire A could instead have
labels of ψ and π while wire B has labels of φ and δ. Then gate C (the AND
gate on the left) would then have a truth table that dictates the output label
when the inputs are π and δ or any other combination. Naturally, one can
still evaluate a circuit without knowing which arbitrary labels correspond to
True. This forms the basis for garbling.

The goal for Yao’s Garbled Circuits is to allow one party to perform
some transformation on a Boolean circuit such that the other party can
evaluate the circuit blindly. If the garbler, traditionally named Alice, were
to evaluate the circuit, she would know how the inputs correspond to Trues

6

A B C A B C A B C

0 0 0 ψ φ ∩ ψ δ ∩
0 1 0 ψ δ ∩ π δ ⇔
1 0 0 π φ ∩ π φ ∩
1 1 1 π δ ⇔ ψ φ ∩

Table 2: The original truth table from Tab. 1 on the left
and partially garbled in the center, and randomly permuted
on the right. Each wire’s labels have been substituted with
an arbitrary pair that correspond to True and False. Note
that even in the table on the right, it’s possible to determine
which arbitrary labels correspond to True versus False.

and Falses, and she is therefore ineligible to evaluate the circuit if the two
parties wish to keep their inputs secret. If the evaluator, traditionally named
Bob, could determine how the arbitrary labels correspond to True and False
values, preserving privacy would be similarly impossible. Instead, we must
find a way to completely obscure the function of a gate while still allowing
Bob to evaluate it.

Naturally, seeing the truth table would reveal how the arbitrary labels
correspond to True and False. Especially since Bob must know the whole
circuit definition (for reasons that will become obvious in the next section),
he will already know that gate C is an AND gate, and if he received the
partially-garbled truth table shown in the center of Tab. 2, then he would
immediately know that π, δ, and ⇔ all correspond to True because of the
last row. Even without preserving the order, as shown in the table on the
right, the asymmetry of the AND gate still gives away the values hidden
under the arbitrary labels. Bob can look at the entire table and count that
there are three instances of ∩ in the output and only one ⇔, and conclude
that ⇔ must mean True.

The solution is for Alice to encrypt the output of each individual row of
the randomly-permuted and arbitrarily-labeled table, using that row’s inputs
as keys. Then when Bob wishes to evaluate the circuit beginning with the
labels on the left, he combines them to form a key with which he can unlock
the correct output for each gate. The rest of the evaluation process proceeds
as normal, but each gate evaluation now involves decryption. This way, Bob
cannot observe the whole gate truth table like before, and therefore has no
clues about the hidden meaning of the arbitrary labels.

7

At this point, it is easier to proceed with a different metaphor. Consider,
instead of truth tables, a collection of four locked boxes, each with two key
holes. Here, wire labels become keys such that each wire gets a unique pair
of keys where one secretly corresponds to True and one to False. Then to
evaluate a gate, you take the two inputs keys (wire labels) and open the
only box that they fit in (decrypt the row of the truth table) to reveal the
contents of the box, which is another key (the output column of the truth
table which contains another wire label).

The process of evaluating the circuit is then Bob unlocking any box he
has both keys for, and adding whatever key is inside to his collection as he
goes. To begin the process, Alice prepares by making many random pairs of
keys and locking them in boxes, and then sends these boxes to Bob. Once
Bob has all of the keys that correspond to the inputs to the circuit, he
can start unlocking boxes. When he does this, Bob is executing the circuit
blindly without learning anything about the values in his computation. The
whole garbled circuit is like an opaque machine that Bob drops his keys into,
and then he “turns the crank” until the output comes out the other side.

Alice made all the boxes, so she can place the plaintext circuit outputs
(0 and 1) in each final box on the right side of the circuit rather than
a random key. It’s her knowledge of the garbling transformation that’s
required to convert the answer from random keys and boxes to the result of
the calculation.

Careful readers will have noticed a problem, though. How can Bob get
the keys that correspond to Alice’s inputs and his own inputs to begin the
evaluation? Alice can simply send the keys that correspond to her input
directly to Bob, since he doesn’t know how they correspond to True and
False values. For Bob’s input, the solution is to use an oblivious transfer as
described in the previous section.

Alice generates the true and false keys for every input bit. She can just
give Bob the right key for her own input, since Bob doesn’t know what
it means, but she can’t give Bob both keys for each of his inputs or he
would be able to speculatively execute the circuit and he might be able to
figure out her input. Bob also can’t just ask for the key that corresponds
to his input, because then Alice would know his input trivially. Instead,
Bob requests the keys for each bit of his input with an oblivious transfer
and Alice therefore does not know which keys he’s receiving. Bob also does
not receive any extra keys that would allow him to snoop on other possible
circuit evaluation outcomes.

The vertical arrows in Fig. 3 are transformations to and from the garbled

8

Input Circuit Output

Garbled
Circuit

Garbled
Input

Garbled
Output

Figure 3: Circuit garbling as a translation. The red ar-
rows show Alice’s role and the blue arrows show Bob’s. The
greyed-out portion shows how a non-garbled circuit would be
evaluated.

execution space that Bob works in. The horizontal arrows are computations
within this garbled execution space. Since Alice knows about the trans-
formation, she can’t be the one to do the execution. Since Bob has all the
inputs, he can’t learn anything about the transformation. Together, though,
they can perform the computation without either of them learning anything
about the computation, including each other’s inputs, except the final result.

2.4 Yao’s Garbled Circuits

This protocol was first described by Andrew Yao in 1986 at that year’s IEEE
Annual Symposium on Foundations in Computer Science[1]. In the most
basic terms, one party “garbles” the circuit by encrypting and transposing
the inputs to each logic gate, then sends the stream of garbled gates to a
second party, who evaluates the garbled circuit with their own private inputs
while learning nothing about the garbler’s inputs.

Alice, who garbles the circuit, must get this new representation to Bob.
If we assume they both already have the same circuit to begin with, and
they agree on a way to sort the gates into a series, then Alice can send the
new truth tables that she generated in that order. Further, since the truth
tables are permuted randomly anyway, there’s no need to send the input
columns. This means that Alice only needs to send the encrypted outputs
of each gate for each input combination, and Bob knows how to reassemble
this information into the complete garbled circuit to evaluate.

This presents an asymmetry in which one party must calculate each gate

9

of the circuit for all inputs and broadcast a high volume of information while
the other party performs a fraction of the work and only sends back data
about the inputs and outputs. This asymmetry is similar to the current
cloud-computing model, where servers in data centers perform difficult cal-
culations while the client does minimal work to request and interpret the
result.

There have been several improvements to Yao’s original protocol since it
was published[7]. For example, in the original protocol, it is unclear how the
evaluator knows which row of a truth table to decrypt, since there is no way
to observe a key and ciphertext and know that they go together. This leads
to “trial decryptions” where valid keys are padded in some recognizable way,
and the evaluator attempts to decrypt each row until they find the result
with the proper padding. Clearly this is not efficient and improvements are
desireable.

2.5 Improvements on the Protocol

Yao did not describe his original protocol with enough specificity to in-
form the design of a practical implementation. In particular, how does the
evaluator know which row of the table to decrypt? One solution is trial
decryptions. The garbler chooses keys to end with a bunch of zeros, and the
evaluator decrypts until they find the one that ends with zeros. This is bad
for performance and the number of ciphertexts to send creates a bottleneck
in transmission. Research into improvements has been fruitful, and I detail
the most relevant optimizations below.

2.5.1 Permute and Point

This first optimization seeks to avoid trial decryptions by helping Bob know
which ciphertext to decrypt given only the keys he already has. The clever
solution is to append a 0 or 1 to each key such that matching pairs always
have one of each bit (called color bits)[8]. Note that these color bits are
arbitrary and do not necessarily correspond to True and False.

Then for each truth table, the rows are permuted randomly as before,
but in accordance with the random color bits rather than independently
random. This means that when Bob has two keys and would like to decrypt
the output of a particular gate, he simply needs to combine the last bit of
each key to form the index of ciphertext that those keys decrypt. This is still
secure since these color bits do not give Bob any information about which

10

label corresponds to True[8].
In the box analogy, this is like assigning each key a color, and then

coloring the locks on the boxes. There won’t be any guesswork, because if
you have a green and a blue key, you will only try to unlock the box with
the green and blue locks, rather than the box with two blue locks.

2.5.2 Row Reduction

To maintain better security and make guessing infeasible, keys and cipher-
texts are often chosen to be quite large. In my implementation, I used
128-bit numbers to transmit and store these values. This means that each
gate’s lookup table takes up 128∗4 = 512 bits. Any circuit of real-world use
will have many gates; the SHA-256 circuit has over 130000 gates[5], which
would mean 8MB of ciphertexts without further optimization, just to hash
a single 512-bit block. Hashing a 1GB file would then take around 16TB
of ciphertext transfers. Clearly, any way to reduce this number would be
beneficial.

In practice, the encryption is performed by hashing the input keys, then
using XOR to combine the resulting hash with the output key to form a
ciphertext (so the encryption is in the form of a one-time-pad where the pad
is generated with a hash). If we choose the first output key such that it
matches the hash of the first input keys (“first” meaning after the permuta-
tion according to the color bits), then the XOR operation produces a zero,
and the first ciphertext in the truth table is zero every time[9].

If the first ciphertext is always zero, then there is no need to transmit
it, since Bob can just use the hash of his input keys as the output key if the
color bits on the keys indicate that the first ciphertext should be decrypted.
This means that instead of transmitting four ciphertexts per gate, we only
need to transmit three.

2.5.3 Free XOR

I have so far described pairs of keys or labels as arbitrary (ψ and π for
example). The pairs can also have a non-arbitrary relationship to Alice
while still appearing random to Bob: Alice can instead choose a random
delta, ∆, before she begins garbling, and then for each label A, with a
random A0 for False, she computes A1 = A0 ⊕ ∆ for the associated True
label on the same wire[10]. Since Bob never has both the True and False
labels for the same wire, he cannot recover the private delta ∆ that Alice

11

chose, and therefore cannot derive the inactive label from the active one in
his possession.

Let A and B be input wires to an XOR gate and let C be the output
wire. Then Alice can choose the False output label C0 = A0 ⊕ B0 and the
True output label C1 = C0⊕∆. It follows that this same output is generated
when both inputs are True:

A1 ⊕B1 = (A0 ⊕∆)⊕ (B0 ⊕∆) = C0

Similarly, when only one input is True, the output is

A0 ⊕B0 ⊕∆ = C0 ⊕∆ = C1

These choices of C0 and C1 mean that the correct output label of an XOR
gate can be computed without the hashing function and without sending a
ciphertext, since when Bob encounters an XOR gate, he can simply XOR
the input labels to produce the output label[10].

The result is that XOR gates become “free” in that neither Alice nor Bob
need to perform cryptographic operations to generate or evaluate them, and
XOR gates also do not require any transmission of ciphertexts. This means
that circuits should be optimized to maximize the number of XOR gates,
which now require sending zero ciphertexts, and minimize the usage of AND
gates, which require sending three ciphertexts and performing cryptographic
hashes.

2.5.4 Beyond

The most recent fundamental improvement at the time of writing is called
Half Gates[11], which reduces the data sent from the garbler to the evaluator
by short-circuiting AND gates to encode either buffers or inverters depending
on each party’s known inputs to that gate. The result is that AND gates only
require the transmission of two ciphertexts instead of three. This is also the
furthest reduction possible in the number of ciphertexts for an AND gate[11].

Another further improvement is called Garbled Gadgets. While Free
XOR allows for free additional modulo 2, Garbled Gadgets extends this to
free addition with any modulo[7]. The aim of circuit optimization is then to
look for ways to define the computation in terms of additions of any modulo,
again with minimal use of AND gates.

12

2.6 Encryption

For theoretical cryptography, any method of encrypting rows of truth ta-
bles would lead to correct and secure MPC. In practice, to make full use of
the optimizations mentioned above, encryption is done by using XOR with
a one-time-pad to blind the plaintext. This one-time-pad must be indis-
tinguishable from random and deterministically depend on the input wire
labels. In practice, these requirements can be met by encrypting the in-
put labels and using that ciphertext as the one-time-pad to generate the
ciphertext that goes in the truth table. Since most modern processors in-
clude instruction extensions for efficiently computing AES (the Advanced
Encryption Standard), this is a reasonable choice for the “hash” function
that generates a one-time-pad from the input labels.

The AES algorithm starts with the plaintext as 16 bytes arranged into a
4×4 matrix. The key is also in the form of a 4×4 matrix, and expanded into
a series of several such matrices, called round keys. First, the first round key
is added to the state array with XOR. Next, the following process occurs
nine times:

1. Each byte in the state matrix is substituted with a byte from a lookup
table called an S-box.

2. The second row of the matrix is rotated one place to the left, the third
row is shifted two places, and the bottom row is shifted three places
to the left.

3. The columns are each multiplied by a particular fixed matrix over a
Galois field (a particular kind of multiplication).

4. The round key is added to the state matrix with XOR.

After these rounds, the bytes are substituted from the S-box once more
and the rows are shifted before adding the final round key to get the en-
crypted ciphertext (or in our case, the hash output).

This process sounds complicated, but it is well-suited to efficient imple-
mentations in both software and hardware, including making extensive use
of lookup tables that encode the same operations as listed above.

2.7 Field-Programmable Gate Arrays

An FPGA (Field-Programmable Gate Array) is a kind of chip that imple-
ments reconfigurable logic. My coprocessor design runs on an FPGA rather

13

than going through the prohibitively expensive process of manufacturing a
“real” single-purpose chip. The “gate array” part of the name means that
the chip is made of a grid of general-purpose elements, shown in the zoomed-
out view on the left in Fig. 4. This part of the chip is called the fabric.

The “field-programmable” part of the name means that these connec-
tions can be reconfigured on-the-fly after the chip has been manufactured
and shipped. I used this reprogramming capability to test each iteration of
my design. Zooming in, you can see diagonal wires representing a connection
between the bus lines and components internal to each element. There are
several types of elements distributed across the fabric, including elements
specifically for input and output, clock signal generation, digital signal pro-
cessing, RAM, and basic elements, which contain registers and configurable
lookup tables.

Figure 4: Place and route output of my hardware design.
The black wires represent the allocated interconnects. The
zoomed portion shows the reconfigurable internals of several
logic cells.

HDL stands for “hardware description language” and it’s the equiva-
lent of “code” in software programming. Rather than code, a compiler,
and an executable, the FPGA build toolchain has HDL, synthesis, place &

14

route, and the bitstream. I used the Verilog language to define the copro-
cessor, which is used to define state machines and combinational logic at
the register-transfer level of abstraction. Synthesis is the process of turning
this description into an abstract hardware definition. Place & route is the
process of placing circuit components onto elements of the FPGA fabric and
routing connections between these components. Once the final FPGA con-
figuration has been determined, it is serialized into a format that the FPGA
chip can read to configure itself[4].

The FPGA configuration is volatile, so the bitstream must be sent to the
chip each time the board turns on. The FPGA development board there-
fore includes a nonvolatile flash memory chip which stores the configuration
bitstream and sends it to the FPGA when the board receives power[12].

15

3 Approach

In this section, I’ll describe all of my design choices when planning and
implementing this project.

3.1 Algorithm

I first implemented Yao’s Garbled Circuits with the permute-and-point op-
timization. Next, I added the Row Reduction and Free XOR optimiza-
tions. I decided not to pursue Half Gates or Garbled Gadgets due to time
constraints. Implementing the remaining state-of-the-art optimization tech-
niques would be a good candidate for future work.

I chose to keep the project general-purpose, such that it could execute for
any circuit definition within the hardware limits (more on limits in Sec. 3.4).
This is in contrast to a “baked-in” approach where I choose one circuit to
garble, and hard-code it into the FPGA as an accelerator for only that
computation. Algorithmically, this means that the circuit definition needs
to be reconsidered dynamically every execution time.

My implementation uses a streaming approach, wherein the first line of
the circuit definition file is interpreted, computed, and transmitted before
the next line is even read. This is in contrast to an in-memory approach
which would read the entire file, perform all computations, then transmit
all messages. This means that the size of the circuit is not a concern for
the garbler, and the evaluator can simply pass off the network traffic to the
FPGA as it comes in. Considering that (useful) circuits can easily be larger
than a typical consumer-oriented computer’s memory, streaming is essential
to scalability.

3.2 Protocol

I embraced the “semi-honest” model, in which the two parties behave cor-
rectly, but are “curious” about the information which should be hidden from
them. This means that I can define the garbler-evaluator protocol without
added security in mind to prevent the parties from acting maliciously. I
therefore designed a protocol that makes many assumptions about the other
party, like that they run the same version of the software and aim to evaluate
the same circuit.

These last two assumptions are fine for development and testing, but any
real application would require sending at least the software version and the

16

circuit definition file’s hash before starting the transaction. Once both par-
ties have the same definition file, the order of transmission of data structures
is the same every time, so there is no need for packet framing and metadata
beyond what’s inherent in TCP. The parties communicate over a socket
that could be local, LAN, or across the internet, and I leave packetizing,
buffering, and various transmission guarantees to the TCP/IP stack.

First, the garbler (Alice) listens for incoming connections. Once a socket
is established, Alice sends her garbled inputs to Bob (the evaluator). Bob
then requests his inputs bit-by-bit through oblivious transfers with Alice.
After this setup phase, since the gate types and wire IDs are already pro-
vided in-order in the circuit definition, Alice sends Bob only the AND gate
ciphertexts as she computes them. Finally, once all the gate definitions have
been transmitted, Alice sends a hash of each output wire’s False label. Bob
hashes his own output labels and compares them to the hashes received from
Alice. For each wire, if the hash matches, then Bob knows that the output
value on that wire is False. If the hash does not match, the output is True.
Bob the recombines these True and False values as a binary number to form
the output of the computation.

Communication between Bob’s smartphone and FPGA is more compli-
cated since it doesn’t have access to the circuit definition file. The circuit
definition can be considered a set of instructions for the co-processor to exe-
cute, and sending these ahead of execution time would add significant design
overhead for the storage and access of these instructions. Instead, opcodes
(the gate type), operands (the gate ID and input wire IDs), and data (ci-
phertexts when the gate is an AND gate) are all transmitted over the same
serial connection. Each instruction is packed with the gate type first, then
the input IDs (or just one ID in the case of a buffer gate), the ciphertexts
if present, and finally the gate ID. In addition to the gate type instructions,
there are also instructions to set the read/write head, write a wire label, and
read a wire label. The writing is used to provide the FPGA with the initial
garbled inputs, and the reading occurs at the end to report the calculation
result to the smartphone.

3.3 Software

I wrote the garbler and evaluator code in Python. An interpreted language
is obviously not ideal for a performance-oriented project, but Python’s sim-
plicity proved valuable for debugging and rapid prototyping. With more
time or in a following project, I would re-implement the functionality in

17

Rust or C. I made some design decisions with a language migration in mind,
like avoiding libraries beyond the standard library and any esoteric features.

I also made some software design decisions to make the hardware defi-
nition steps easier. For example, I learned and re-implemented AES rather
than relying on OpenSSL or some other cryptography library. This made
the project more of an academic exercise than a typical software engineering
process.

3.3.1 Oblivious Transfer

I first implemented the RSA public-key cryptosystem in Python, then used
it as a library to implement an oblivious transfer API that uses sockets. The
implementation was straightforward.

I originally intended to replace the RSA public-key backend with elliptic
curves (ECC), but ultimately prioritized other aspects of the project. This
is another area for future improvements, since the ECC cryptosystem allows
sending much smaller keys between parties while maintaining the same level
of security.

3.3.2 Advanced Encryption Standard

One of my initial goals was to thoroughly understand and then implement
the Advanced Encryption Standard (AES). To this end, I did not use a
well-audited library like OpenSSL and instead implemented the underlying
mathematics directly. In my first design iteration, I computed every oper-
ation without lookups with the exception of the S-box. After profiling the
performance, I discovered that the Galois field multiplication in the Mix-
Columns step was a tight bottleneck. I replaced the function with a table
lookup to improve performance dramatically.

I could have replaced the other round operations with table lookups to
reach a “T-tables” implementation, but after implementing this technique
in hardware, I decided to leave the software AES functions in their more
readable state describing the distinct operations that compose AES rounds.

3.3.3 Garbler

The garbler role is fulfilled by a single-client server. It listens for new con-
nections, performs a fresh Garbled Circuits computation with any client that
connects, then returns to waiting idle for the next client. Since my testing
and development only ever had one client and one server at a time, there

18

was no need to implement a full FastCGI or WSGI interface. In the cloud-
provider model, a scalable server architecture would be more appropriate,
but this was not an implementation goal. Calling my libraries from a web
server like Flask would make writing a WSGI implementation of the garbler
role simple.

3.3.4 Evaluator

I implemented the evaluation logic three ways. First, I write idiomatic
Python code in software alone. Next, I wrote an FPGA emulator (also in
Python) and modified the evaluation logic to send properly-packed copro-
cessor instructions to the emulated device. Finally, once I had finished the
hardware implementation, I simply swapped the endpoint from the emulated
coprocessor to the real one.

In the default configuration, the evaluator script checks for the presence
of the coprocessor, and falls back to the software implementation if needed.

3.4 Hardware

I chose the Pine64 Pinephone[13]1 for the mobile smartphone platform since
it fully supports a typical Linux environment, allowing me to use the same
source code for the client and server2 software. The Pinephone also includes
a USB port accessible to userspace tools in the same way as on a typical
laptop or desktop, meaning that the interface to the coprocessor is the same
regardless of the platform. I chose the iCEBreaker FPGA development
board[12] (with the Lattice iCE40 UP5K FPGA chip[14]) for its low cost,
low power consumption, open-source board design, open-source development
toolchain3 (utilities listed in Tab. 3), and accessible community.

I prioritized finding an open-source option because of the importance
of public audits for all security-related code. One downside of using the
open-source toolchain is that closed-source pre-designed modules (IP cores)
cannot realistically be sold or licensed for use. This is not a concern for
me because of my goal of allowing total audits and because I do not need
the convenience of drop-in solutions like Ethernet controllers or other high-
complexity high-performance components that would require the proprietary
expertise of the manufacturer.

1Allwinner A64 quad-core SoC, 3GB RAM, USB 2.0 over type-C
28-core Intel Xeon E3-1505M CPU, 32GB RAM (evaluator is the bottleneck)
3https://github.com/YosysHQ

19

https://github.com/YosysHQ

Utility Executable Version Commit

IceStorm icepack, iceprog r777 c495861

Yosys yosys 0.9+4052 0ccc722

Next Gen P&R nextpnr r3529 5a41d20

Table 3: FPGA toolchain utility versions. “P&R” is an
abbreviation of “Place and Route.” All tools were built from
source from the GitHub commit matching the hash in the
right column. These tools can be found on the Yosys Open
SYnthesys Suite GitHub page: github.com/YosysHQ

3.4.1 Execution

I used an event-based design inside the FPGA rather than a central control
unit that issues control signals with fixed timings. For example, the memory
controller emits a signal when it has finished fetching a value, and this
signal is fed to the next component which uses the fetched value. Sequential
and combinational logic considering the current gate type determines which
“done” signals are forwarded to “start” signals.

There are only six instructions: set address, read, write, AND, XOR,
and BUF. The first three are for direct memory access (DMA) over the
serial connection for setting inputs, reading outputs, and debugging. The
latter three instructions are garbled gates to evaluate. Each gate instruction
begins with the gate type (opcode), then the wire ID for each input. In the
case of the AND instruction, 128 ∗ 3 = 384 bits of ciphertexts follow. All
gate instructions end with the gate ID, which is also the wire ID at which
to store the gate’s output. Since there are so few instructions, and the
most common instructions (the gates) each do multiple memory operations,
this coprocessor can be considered to have a CISC (complex instruction set
computer) architecture.

A high-level overview of the architecture is shown if Fig. 5. The serial
signal enters through the SPI module into an encoder/decoder, which breaks
each instruction down into its fields and strobes control lines when each field
is received. When the wire ID of an input is received, the memory controller
fetches the wire label stored at that address. If it is the second wire ID of the
gate and it is an XOR gate, then the second fetched wire label is combined
with the first with XOR, and the result is held until the gate ID (destination
wire label address) is received. The result is then stored at that address.

20

github.com/YosysHQ

SPI CTL

DMA Addr

DMA Data

Gate ID

Input ID

CTXT

Gate Type

SPI

SPI

Label CTL

DMA Addr

DMA Data

Addr

Label In Label Out

RAM

RAM

/

12

/

128

/

12

/

12

/

12

/

128

/

128

/

2

/

128

/

128

/

128

/

128

/

128
AES /

128

/

128

/

128

/

128

/

128

Figure 5: Simplified coprocessor architecture. The main
memory-memory logic is implemented in the bottom center.
The behavior of the three multiplexers on the bottom over
time determine which gate (instruction) is being evaluated.

If the gate type is an AND gate, then the two fetched values are combined
to form the input to the AES hash function and the point-and-permute
pointer. Once the AES encryption is complete (which occurs while the
first ciphertext is being received), the hash is held until the index of the
most recently received ciphertext matches the point-and-permute pointer,
at which point they are combined with XOR and the result is held until the
gate ID arrives. In all cases, the final result is stored as soon as the gate ID
arrives.

3.4.2 Pipelines and Memory

The coprocessor has a memory-memory architecture: instructions operate
on the contents of memory without any general-purpose registers. Each
garbled gate evaluation requires one or two memory reads and one memory
write, with two or three address therefore specified within each instruction.
Memory operations are done in the order of addresses within the instruction
as the instruction is read in from serial byte-wise.

These memory operations are individually pipelined. Memory is used for
the AES lookup tables and for the wire label storage. Unfortunately, the
very nature of each gate instruction and the AES T-table lookups present
load-and-use hazards that require waiting for dependencies and inserting
pipeline bubbles. Each AES round requires two memory operations since
there is only enough RAM width to support looking up half of the values

21

in the state array at a time, so while these two operations can be pipelined,
there is no way to keep the memory pipeline full across rounds. This also
means that there would be no speed penalty to performing each round in
three lookups instead of two, since the second lookup of one round could
take place while the first lookup of the next round enters the pipeline, filling
the bubble.

Even combining all four SPRAM blocks to create a wire label array only
offers the bit width to accommodate half of a wire label, so memory accesses
to the wire label array are also pipelined as two operations.

3.4.3 Limitations

My choice of FPGA development platform placed many restrictions on my
implementation. For example, I only have room on the fabric to provision a
module capable of performing half of an AES round in a single clock cycle.
On a larger FPGA, I would have enough room to fully unroll the algorithm’s
loops and perform all AES rounds in a single clock cycle. Similarly, I would
have more options for fast inputs and outputs.

Right now the design uses on-chip SPRAM for wire label storage, which
only has space to safely store 8192 wire labels. It effectively functions as a
direct-mapped cache without a larger memory device to back it. This means
that any gate in the garbled circuit which requests an input wire with an ID
more than several thousand addresses behind the gate ID runs the risk of
having the desired wire label overwritten. This issue can be easily detected
in software during execution or as a preprocessing/validation step, but the
much better solution is to use more RAM.

3.4.4 Scalability

The event-based architecture makes it trivial to integrate a new memory con-
troller for a larger bank of memory. The standard expansion port (PMOD)
on the development board makes adding RAM simple, though a new driver
would be required on the fabric.

Similarly, a faster AES implementation relying on more lookup tables
or an unrolled loop would easily slot into the current design without the
concern for tweaking timings or delays in other components.

22

4 Results

I ran comparative tests between the software-only system and the system
with FPGA integration4. Since my design goal is a coprocessor for mobile
devices, speed and power efficiency were both concerns.

4.1 Speed

Performing a 64-bit integer division with the software-only implementation
between Wi-Fi devices on LAN took 7.6 seconds on average. Evaluating
the same circuit with the same devices, but with the FPGA attached to
the evaluator, took 10.1 seconds on average. My analysis suggests that
this slowdown occurred from idle time on the serial line as the evaluator
performed byte manipulations and passed the next instruction off to the
SPI serial library.

Initial benchmarks of the serial connection indicated the possibility that
it would be the bottleneck, even when sending instructions back-to-back. In
practice, I added a counter to the coprocessor design to count the number
of cycles between the end of one instruction and the start of the next, and
found an average of over 5000 cycles spent idle. This number is not useful
on its own, but with a calculation of the average number of cycles to process
one gate, I can calculate the maximum speed of the coprocessor without
concern for the serial or network connections upstream.

Gate type Cycles Time at 45MHz Gates per second

AND 247 5488ns 182000
XOR 26 578ns 1730000

Table 4: Coprocessor performance for each gate type.
The right column assumes instructions are sent back-to-back
without idle time on the serial connection. nextpnr reported
a maximum clock speed near 45MHz.

Using a similar cycle counter, I found that XOR gates take 26 cycles
on average and AND gates take 247. This time includes receiving the in-
structions as bits, shifting them into bytes, deserializing into addresses &
ciphertexts, fetching from memory, computing AES & waiting to receive the

4https://github.com/gabrielkulp/undergrad-thesis

23

https://github.com/gabrielkulp/undergrad-thesis

correct ciphertext (in the case of an AND gate), and finally storing the com-
puted active wire label. The variability (I provide the average cycle time
for each gate type) occurs because the serial module and the rest of the
coprocessor operate in different clock domains, meaning that the number of
coprocessor cycles per received byte depends on the relative frequencies and
phases of each clock signal.

In the 64-bit integer division circuit[5] there are 12603 XOR gates and
4285 AND gates. With this ratio, there are an average of 80 cycles per gate.
Combining this information with the 5000 cycles between gates, the serial
utilization ratio is only 1.6%, meaning that a fully-saturated link would be
62 times faster than what I measured.

This analysis does not consider the potential speed improvements of
higher clock speeds. I chose 30MHz for the main clock, but the place and
route tool suggested I could go as high as 45MHz without redesigning any-
thing. With redesign work, there are also several pipelines I could improve
and processes I could stream instead of batch which would reduce the num-
ber of cycles spent processing a single gate and make room for a faster
interface to the smartphone.

4.2 Power Efficiency

The iCE40 UP5K FPGA chip is marketed primarily as a low-power choice,
with an advertized idle power consumption of 75µA and typical consumption
of 1-10mA.[14]. The expectation is therefore little to no impact on battery
life from the FPGA itself. Other components, such as the FTDI USB inter-
face chip or the USB daughterboard on the smartphone, could draw more
power than the coprocessor itself. (I actually felt more heat coming from
the FTDI chip than the FPGA while running tests, but I didn’t have a way
to properly measure power consumption.)

The simplest way to test power consumption in a “real-world” way is to
measure battery life. I modified the garbler and evaluator scripts to print
a timestamp and loop once they finish a computation, and then I ran the
evaluator script on the smartphone starting at full battery until it died. I
ran both tests after leaving the battery plugged in at 100% for several hours
to hopefully mitigate any rebound effects of the battery chemistry.

The smartphone lasted about one hour and 40 minutes, with or without
the coprocessor attached. This was surprising, but believable considering
the low-power nature of most components involved.

I took no explicit measures to decrease power consumption, but several

24

options are available with this chip. The SRAM on the die has a power saving
mode which I could enable when waiting for the next gate, and I could drop
the clock speed to have the minimum number of clock cycles between each
incoming serial byte to still keep up with the stream. Measures like these
could counteract the extra power draw that the DRAM expansion would
incur. This could be a subject of future research.

25

5 Conclusion

My vision is to make privacy-preserving computations more common. In
the United States, HIPAA and FERPA laws protect healthcare and student
records respectively, but these laws prevent analysis that could have great
value to society. MPC allows calculations on these data that no single party
could ethically or legally compute on their own.

Most academic focus in the field of MPC is on data centers, with many
fewer published attempts at enabling low-power devices like smartphones
and small FPGAs to participate. Working with these low-power devices
has value to the cryptography community: developing in constrained envi-
ronments inevitably contributes to the less-constrained ones, and the wide-
spread nature of mobile devices offers many opportunities for real-world
applications of privacy-preserving cryptography.

Our devices already have efficient hardware support for some crypto-
graphic operations, opening the doors to online banking, secure video call-
ing, and other private transactions. I would like to see mobile devices that
can efficiently do MPC with each other or cloud services to open the doors
to even more private applications.

This thesis presents a feasible architecture with significant performance
potential for low-end mobile devices. With a faster CPU-to-coprocessor
connection or the coprocessor instructions implemented as en extension of
existing mobile SoC instructions, mobile MPC could be constrained only by
the speed of the network connection. Future work promises to be exciting.

26

References

[1] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, IEEE Computer Society, 1986, pp. 162–167. doi: 10.1109/
SFCS.1986.25.

[2] P. Bogetoft, D. Lund, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard,
J. Nielsen, J. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft,
“Secure multiparty computation goes live,” vol. 5628, Feb. 2009, pp. 325–
343, isbn: 978-3-642-03548-7. doi: 10.1007/978-3-642-03549-4_20.

[3] M. Ball, B. Carmer, T. Malkin, M. Rosulek, and N. Schimanski, Garbled
neural networks are practical, Cryptology ePrint Archive, Report 2019/338,
2019. [Online]. Available: https://eprint.iacr.org/2019/338.

[4] C. Wolf and M. Lasser, Project IceStorm, http://bygone.clairexen.net/
icestorm/.

[5] D. Archer, V. A. Abril, S. Lu, P. Maene, N. Mertens, D. Sijacic, and N.
Smart, ’Bristol Fashion’ MPC circuits, https://homes.esat.kuleuven.
be/~nsmart/MPC/.

[6] M. O. Rabin, How to exchange secrets with oblivious transfer, Harvard Uni-
versity Technical Report 81 talr@watson.ibm.com 12955 received 21 Jun
2005, 1981. [Online]. Available: http://eprint.iacr.org/2005/187.

[7] S. Yakoubov, A gentle introduction to yao’s garbled circuits, preprint on
webpage at https://web.mit.edu/sonka89/www/papers/2017ygc.pdf,
2017.

[8] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - secure two-party
computation system,” in Proceedings of the 13th USENIX Security Sympo-
sium, August 9-13, 2004, San Diego, CA, USA, M. Blaze, Ed., USENIX,
2004, pp. 287–302. [Online]. Available: http://www.usenix.org/publications/
library/proceedings/sec04/tech/malkhi.html.

[9] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and mech-
anism design,” ACM Press, 1999, pp. 129–139.

[10] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR gates
and applications,” in Automata, Languages and Programming, 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Pro-
ceedings, Part II - Track B: Logic, Semantics, and Theory of Programming
& Track C: Security and Cryptography Foundations, L. Aceto, I. Damg̊ard,
L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz,

27

https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-642-03549-4_20
https://eprint.iacr.org/2019/338
http://bygone.clairexen.net/icestorm/
http://bygone.clairexen.net/icestorm/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
http://eprint.iacr.org/2005/187
https://web.mit.edu/sonka89/www/papers/2017ygc.pdf
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html

Eds., ser. Lecture Notes in Computer Science, vol. 5126, Springer, 2008,
pp. 486–498. doi: 10.1007/978-3-540-70583-3_40.

[11] S. Zahur, M. Rosulek, and D. Evans, Two halves make a whole: Reducing
data transfer in garbled circuits using half gates, https://eprint.iacr.
org/2014/756, 2014.

[12] P. Esden-Tempski, iCEBreaker FPGA, https://github.com/icebreaker-
fpga/icebreaker, 2017.

[13] Pine64, Pinephone, https://www.pine64.org/pinephone/.

[14] iCE40 UltraPlus, https://www.latticesemi.com/en/Products/FPGAandCPLD/
iCE40UltraPlus, product page.

28

https://doi.org/10.1007/978-3-540-70583-3_40
https://eprint.iacr.org/2014/756
https://eprint.iacr.org/2014/756
https://github.com/icebreaker-fpga/icebreaker
https://github.com/icebreaker-fpga/icebreaker
https://www.pine64.org/pinephone/
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus

	Introduction
	Motivation
	Scope

	Background
	Boolean Circuits
	Oblivious Transfers
	Garbled Circuits
	Yao's Garbled Circuits
	Improvements on the Protocol
	Permute and Point
	Row Reduction
	Free XOR
	Beyond

	Encryption
	Field-Programmable Gate Arrays

	Approach
	Algorithm
	Protocol
	Software
	Oblivious Transfer
	Advanced Encryption Standard
	Garbler
	Evaluator

	Hardware
	Execution
	Pipelines and Memory
	Limitations
	Scalability

	Results
	Speed
	Power Efficiency

	Conclusion

