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Presentation Outline
1: Background (Slides 3-7)

• Advanced Reactors
• TRISO Fuel
• Pebble Bed Reactors
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3: Design Challenges (Slides 20-23)
• Processing DEM Data
• Making Assumptions
• Running the Simulation

2: Significance (Slides 8-19)
• Homogenized Diffusion
• Pebble Tracking Transport 

(PTT)
• Packing Fraction
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Reactor Generations
• Reactor designs are split into 

generations

• The majority of reactors in america 
are generation II and III

• The industry is currently working 
towards Generation IV 

• Gen. IV has many advantages:

– Cost Effective
– Inherent and Enhanced safety
– Proliferation Resistant 

• Pebble-Bed Modular Reactor (PBMR)
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[NERAC, GIF, 2002]



TRISO Fuel 
• TRISO (TRI-structural ISOtropic) fuel starts with 

enriched uranium (UO2) reactor fuel kernel

– Fuel kernels are covered in multiple layers of 
graphite and ceramics

• The final product is a fuel sphere, these spheres 
have many advantages over rod forms of reactor 
fuel:

– High temperature resistance, Contains the 
fission products, Structurally sound, and 
Nearly impossible to extract the uranium
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[NEA, 2013]
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Pebble Bed
• Pebble bed reactors use TRISO fuel spheres 

within the reactor core

• The uranium inside these fuel spheres causes 
a reaction which produces heat

• Helium gas is pushed through the gaps in 
between the pebbles to remove heat
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Pebble Bed Reactor
• The reactor for this project is a pebble-bed 

reactor

• Fuel pebbles are contained within the 
annular region of the reactor core

• Annular means ring shaped cylinder

• We have restricted our model to just the 
area outlined in blue
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Significance
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Comparison Between Two Methods
• This project compares two reactor core modeling methods

• The assumptions made in each model affect the neutron physics (neutronics)

• The first model is of a homogeneous core

–  Physically unrealistic but proven and provides acceptable results

• The second is a core using a Pebble-Tracking Transport (PTT) algorithm

– Physically realistic but unproven and computationally expensive
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Pebble Packing Factor 
• Packing fraction is the amount of space 

occupied by the pebbles within a certain 
volume.

• Important to understand fluctuations 
throughout the core so we can determine 
its impact on the reactor performance.
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Part we 
care about

Packing Fraction = 
Volume of pebbles
Volume containing 

pebbles



Homogeneous Model
• Assumes a single 

homogenized material 
for the core; a mixture 
of all the pebble 
materials into one 
“blob”
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Pebble Tracking Transport Model
• Tracks each pebble 

individually, this is much 
more realistic 

• More precision in 
neutronics modeling for the 
core over the homogenized 
method
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Significance

Individual pebbles within the core region modeled 
as nodes



Accident Scenarios to Compare Methods
• Two accident scenarios will be used in the comparison between 

modeling methods

• Accident scenarios for this project:

– Before and after a seismic event (earthquake)

– Depressurized Loss of Forced Coolant (DLOFC)

• These scenarios represent design-basis accidents individually and 
beyond design-basis accidents when coupled

– Important for risk assessment and safety analysis for regulators 
like the Nuclear Regulatory Commision (NRC)
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Accident Scenario: Seismic Event
• This accident scenario will simulate 

an earthquake

• The event will shake the core and 
force the pebbles to become more 
densely packed and therefore a 
higher packing fraction

• As the fuel is more densely packed, 
the reactivity of the core will increase 
which leads to increased power and 
temperatures
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[Chen et al., 2020]



Accident Scenario: 
Depressurized Loss of Forced Coolant 
• Depressurized Loss of Forced Coolant 

(DLOFC) 
• In this scenario we simulate the 

aftermath of an accident which the 
reactor loses its coolant, i.e. coolant is no 
longer flowing through the core

• Core materials including the fuel will 
begin to heat up significantly

• Optimal upper limit for fuel is 1600 C
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[Strydom et al., 2010]



MAMMOTH
• For regulators it is important to have a comprehensive code that can 

represent both normal operation and an accident scenario, and MAMMOTH is 
promising.

• MOOSE is the INL Multi-Physics Framework that allows for the construction 
and solving of Partial Differential Equations (PDEs) that represent physical 
system behavior.

• MAMMOTH is a MOOSE Module specifically designed for simulating Reactors.
• Capable of simulating both a reactor in steady state and with transients 

(constant conditions vs. changing).
• A goal of this project is to evaluate the performance of MAMMOTH for PBRs.
• MAMMOTH takes an input file that includes the mesh of our core and a set 

of properties which we define to the core regions.
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CUBIT/TETGEN
• Meshing softwares used for 

homogenized and the PTT base model 
respectively. 

• CUBIT utilizes an Add-On developed by 
INL specifically for this style of core 
that optimizes the mesh for neutronics 
of reactors.

• TetGen is used to handle the large 
amount of elements for the PTT 
meshes, can even model individual 
elements.

• Both are methods that are commonly 
used by the industry and research 
professionals.
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Individual pebbles within the core region



PEBBLES
• Developed by Dr. Cogliati at INL, DEM code specifically for modeling 

pebble distribution.
• All fuel spheres are treated as individual elements, with their own center 

location and a set physical properties.
• At a starting point the real life forces acting on a pebble are converted to 

equations the code can interpret.
• At subsequent time steps, resultant equations from the system and 

collisions of elements.

18

Significance



What Will These Models Show? 
• Each accident scenario model will 

show neutronics or heat conduction 
results.

• On the right is a MAMMOTH output for 
a pre-seismic Homogenized Diffusion.

• Left part of the image represents 
thermal flux, right side power density.
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Design Challenges
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Preparing Input Files
• List of 450,000 pebble center 

coordinates

• Need to visualize packing 
fraction distribution 
throughout the core
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Making Simplifications
• We are not going to be able 

to model the core perfectly.

• The key is knowing what 
assumptions you can 
reasonably make.
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Design Challenges

Defuel Chute

Pebble Pile



Running the Simulation 
• Important to know what your 

code (MAMMOTH) is actually 
doing

• Know what to modify between 
our three scenarios

• How do we implement packing 
factor?
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Design Challenges

Temperature of Solid
(What we are solving for)

Porosity
(Related to packing factor)

Pebble-bed effective thermal conductivity:

Neutron Diffusion Equation:



Questions?
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