
Autonomous Package Delivery Robot

College of EECS - Capstone Project
Fall 2021 - Spring 2022

Drew Gehrke
Nicholas McBee

Andrew Pehrson
Nathan Searles
Tyrone Stagner

Oregon State University

Contents

1 Overview 6
1.1 Executive Summary . 6
1.2 Team Protocols and Standard . 7

1.2.1 Communication Analysis . 9
1.3 Gap Analysis . 9
1.4 Timeline . 10
1.5 References . 11
1.6 Revision Table . 12

2 Project Scope 13
2.1 Requirements . 13

2.1.1 Lock Box . 13
2.1.2 Emergency Stop . 13
2.1.3 Battery Monitoring . 14
2.1.4 Edge Detection . 14
2.1.5 Path Following . 15
2.1.6 Object Reaction . 15
2.1.7 Data transferred from system to website . 15
2.1.8 Data transferred from website to system . 16

2.2 Design Impact Statement . 16
2.2.1 Public Health, Safety, and Welfare . 16
2.2.2 Cultural and Social . 17
2.2.3 Environmental . 17
2.2.4 Economic . 18

2.3 Risks . 18
2.4 References . 18
2.5 Revision Table . 20

3 Top Level Architecture 21
3.1 Block Diagram . 21
3.2 Block Descriptions . 22

3.2.1 Display Data . 22
3.2.2 Edge Detection . 22
3.2.3 Imaging Sensors* . 22
3.2.4 Lock Box . 22
3.2.5 MCU Driver . 22
3.2.6 Motor Controller . 22
3.2.7 Navigation Sensors . 22
3.2.8 Obstacle Identification . 23
3.2.9 Path Generation . 23
3.2.10 Power Management System . 23
3.2.11 ROS System* . 23
3.2.12 Web Controller . 23

3.3 Interface Definitions . 24
3.4 References and File Links . 27

1

3.4.1 References (IEEE) . 27
3.4.2 File Links . 27

3.5 Revision Table . 27

4 Block Validations 28
4.1 Motor Controller . 28

4.1.1 Block Overview . 28
4.1.2 Block Design . 28
4.1.3 Block General Validation . 29
4.1.4 Block Interface Validation . 30
4.1.5 Block Testing Process . 30
4.1.6 References and File Links . 31
4.1.7 Revision Table . 31

4.2 Navigation Sensors . 32
4.2.1 Block Overview . 32
4.2.2 Block Design . 32
4.2.3 Block General Validation . 33
4.2.4 Block Interface Validation . 33
4.2.5 Block Testing Process . 34
4.2.6 References and File Links . 35
4.2.7 Revision Table . 36

4.3 Edge Detection . 37
4.3.1 Block Overview . 37
4.3.2 Block Design . 37
4.3.3 Block General Validation . 38
4.3.4 Block Interface Validation . 39
4.3.5 Block Testing Process . 40
4.3.6 References and File Links . 41
4.3.7 Revision Table . 41

4.4 Power Management System . 42
4.4.1 Block Overview . 42
4.4.2 Block Design . 42
4.4.3 Block General Validation . 42
4.4.4 Block Interface Validation . 44
4.4.5 Block Testing Process . 45
4.4.6 References and File Links . 47
4.4.7 Revision Table . 48

4.5 Web Controller . 49
4.5.1 Block Overview . 49
4.5.2 Block Design . 49
4.5.3 Block General Validation . 51
4.5.4 Block Interface Validation . 51
4.5.5 Block Testing Process . 52
4.5.6 References and File Links . 52
4.5.7 Revision Table . 53

4.6 Lock Box . 54

2

4.6.1 Block Overview . 54
4.6.2 Block Design . 54
4.6.3 Block General Validation . 54
4.6.4 Block Interface Validation . 55
4.6.5 Block Testing Process . 57
4.6.6 References and File Links . 57
4.6.7 Revision Table . 57

4.7 Path Generation . 58
4.7.1 Block Overview . 58
4.7.2 Block Design . 58
4.7.3 Block General Validation . 59
4.7.4 Block Interface Validation . 59
4.7.5 Block Testing Process . 59
4.7.6 References and File Links . 60
4.7.7 Revision Table . 61

4.8 Obstacle Identification . 62
4.8.1 Block Overview . 62
4.8.2 Block Design . 62
4.8.3 Block General Validation . 63
4.8.4 Block Interface Validation . 64
4.8.5 Block Testing Process . 64
4.8.6 References and File Links . 65
4.8.7 Revision Table . 65

4.9 Display Data . 66
4.9.1 Block Overview . 66
4.9.2 Block Design . 66
4.9.3 Block General Validation . 68
4.9.4 Block Interface Validation . 68
4.9.5 Block Testing Process . 69
4.9.6 References and File Links . 69
4.9.7 Revision Table . 69

4.10 Micro-controller Driver . 70
4.10.1 Block Overview . 70
4.10.2 Block Design . 70
4.10.3 Block General Validation . 71
4.10.4 Block Interface Validation . 72
4.10.5 Block Testing Process . 73
4.10.6 References and File Links . 74
4.10.7 Revision Table . 74

5 System Verification Evidence 75
5.1 Universal Requirements . 75

5.1.1 The system may not include a breadboard 75
5.1.2 The final system must contain both of the following: a student designed

PCB and a custom Android/PC/Cloud application 75

3

5.1.3 If an enclosure is present, the contents must be ruggedly enclosed/mounted
as evaluated by the course instructor . 76

5.1.4 If present, all wire connections to PCBs and going through an enclosure
(entering or leaving) must use connectors . 76

5.1.5 All power supplies in the system must be at least 65% efficient 77
5.1.6 The system may be no more than 50% built from purchased modules 77

5.2 Lock Box . 79
5.2.1 Lock Box . 79
5.2.2 Testing Process . 79
5.2.3 Testing Evidence . 79

5.3 Emergency Stop . 80
5.3.1 Emergency Stop . 80
5.3.2 Test Process: . 80
5.3.3 Testing Evidence: . 80

5.4 Battery Monitoring . 80
5.4.1 Battery Monitoring . 80
5.4.2 Test Process: . 80
5.4.3 Testing Evidence: . 81

5.5 Edge Detection . 81
5.5.1 Edge Detection . 81
5.5.2 Test Process: . 81
5.5.3 Testing Evidence: . 81

5.6 Path Following . 81
5.6.1 Path Following . 81
5.6.2 Test Process: . 81
5.6.3 Testing Evidence: . 82

5.7 Object Reaction . 82
5.7.1 Object Reaction . 82
5.7.2 Test Process: . 82
5.7.3 Testing Evidence: . 82

5.8 Data transferred from website . 82
5.8.1 Data transferred from website to system . 82
5.8.2 Test Process: . 82
5.8.3 Testing Evidence: . 83

5.9 Data Transferred from System . 83
5.9.1 Data transferred from system to website . 83
5.9.2 Test Process: . 83
5.9.3 Testing Evidence: . 83

5.10 References and File Links . 83
5.10.1 References (IEEE) . 83
5.10.2 File Links . 83

5.11 Revision Table . 83

4

6 Project Closing 84
6.1 Future Recommendations . 84

6.1.1 Technical Recommendations . 84
6.1.2 Global Impact Recommendations . 84
6.1.3 Teamwork Recommendations . 85

6.2 Project Artifact Summary . 85
6.3 Presentation Materials . 86
6.4 References . 86

5

1 Overview

This section will highlight the foundation of our project’s goals and our team dynamic for collabo-
ration. It will discuss the summary of the Autonomous Package Delivery Robot, set standards for
organizing our collaborative process, and postulate the specific area of technology that this project
will influence. Another goal is to establish a general and specific timeline of completion deadlines
for the course of this year.

1.1 Executive Summary

The purpose of this project is to create a robotic package delivery system operating in the
context of an environment with well-developed pedestrian-tailored infrastructure, such as a college
campus. The Autonomous Package Delivery Robot (APDR) will be capable of carrying packages
while autonomously navigating along sidewalks and avoiding obstacles to reach its final destination.
The scope of this project also contains a user interface in the form of a website that will allow
individuals to initiate and receive deliveries at a specified destination.

The goal of this project is to join the increasing number of autonomous delivery robots that
provide contactless deliveries of food and goods to customers. This project will also introduce a
solution to the rising issue of electronic waste, which will be achieved by using recycled electronics
such as the base, motors and batteries of an electric wheelchair.

This project was inherited from a previous Oregon State University EECS Capstone group
(2020-2021). This team will be working with Hanna Anderson, project sponsor, and previous
team member on this project. In its current state, the robot is capable of movement under manual
control, avoidance of stationary obstacles, and waypoint creation using GPS. The technical goals for
the team inheriting this project are developing a secure package delivery system and increasing the
capability for autonomous outdoor travel of the APDR. The developed product will be incredibly
aware of stationary objects and dynamically moving pedestrians and vehicles, as well as provide
an intuitive and reliable courier service to distributors and customers alike.

Many changes and improvements have been made to the system by the new team. The APDR
system now has a way to store packages in its lockbox mounted right on top of the electric
wheelchair base. Other hardware changes include the addition of a team made PCB and new
circuitry to properly distribute power to all the various electronic components of the system.
Another key change is that many of the sensor modules have been off-boarded from the Raspberry
Pi and are now processed on an ESP32 microcontroller. This allows for more processing speed on
the Raspberry Pi. The inertial measurement unit, or IMU, and global positioning system, or GPS,
aid in the navigation of the robot by sending the data first to the ESP32 to be processed, which
the Raspberry Pi then receives and sends to the various topics which require the data. Speaking of
topics, the entire system has been migrated from the first version of the Robot Operating System,
or ROS, into the newer version, ROS2 Galactic. Many custom topics have been developed to get
the APDR system working, including a MCU (microcontroller unit) driver, USB-to-Serial driver,
motor controller driver, and many more. Several other topics have been utilized to aid in traversal,
such as the navigation stack built into ROS2 and the robot translocation topic.

6

1.2 Team Protocols and Standard

Table 1: Team Protocols and Standards table.
Topic Protocol Standard
On-time Deliver-
ables and Team
Collaboration

Drafts of all individuals’ contribu-
tions to teamwork artifacts / sub-
missions should be fully complete by
setting a pre-deadline (such as the
time/date of a team meeting to re-
view the final submission) so that
the team can look it over and make
final revisions together.

Work judged as complete will include
all necessary content and formatting re-
quirements listed in Canvas and will be
nearly error-free.

Task
Management

Team will use Trello for task assign-
ment and record of completion.

During team meetings, the team will
review tasks to be completed and assign
out cards that represent these tasks in
Trello. When a task is complete, indi-
viduals responsible will move it to the
“completed” stack.

Communication Group messaging and weekly meet-
ings will be hosted on the Discord
server for this project.

Team members will be expected to give
notice as soon as possible if they will
not be attending a meeting. Discourse
should be had with a professional mind-
set. Jokes are encouraged to aid in
building team camaraderie, but must
be respectful and not at the expense of
others.

Logging of Time
Spent

Team will use Trello to keep track of
time spent on specific tasks.

Logging of time spent should happen
on a task basis. Before submitting
a ticket as completed, team members
should make a comment on the task
highlighting the scope of the work com-
pleted, problems encountered, and give
an estimate of total time invested in the
task.

Interpersonal
Conflict

If a situation arises where there is a
team conflict, this hierarchy of ac-
tions should be followed.

Address the concern directly with the
individual (1 on 1). If that is not pos-
sible, address the concern with another
team member to get a second opinion.
If the member is not comfortable work-
ing it out within the team, they will
reach out to one of the Course Staff to
resolve the issue.

7

Topic Protocol Standard
Documentation
Standard

Finalized documentation should
be compiled in LaTeX using
Overleaf. Intermediate documen-
tation should be written in a
Google or Microsoft Document.

Before closing out a Trello ticket, work
done should be properly documented.
Minimum of 1 sentence per 30 minutes
spent working. Team members should
use best judgement to make sure ade-
quate information is written.

Coding
Standard

Code will be properly commented
and actively synchronized with
GitHub.

Coding comments: expectation is that
comments should be thorough enough
for the team to be able to follow along at
a medium-high level of what is happen-
ing within the scripts. Individual files
should contain a header with the purpose
clearly described, this should be a para-
graph. All functions should also contain
a sentence or two description and logi-
cal processes within the function should
be briefly described within reason. File
names should match class names, each
class should have it’s own file. Naming
conventions: Pieces of code should follow
the below conventions.

Expenses
And Purchases

Expenses will be tracked in this
spreadsheet.

All project expenses should be approved
by the project sponsor as well as all team
members prior to purchase. Once ap-
proved, expenses will be tracked in the
linked spreadsheet.
All expenses exceeding the project bud-
get will be asked to be financed by the
project sponsor. If financing is not pro-
vided, they will be evenly split amongst
team members.

Hardware
Design Standard

Hardware designs and all 3D
modeling for this project will
be created and stored within
a shared project inside of Fu-
sion360. All PCB design and
schematics will be created with
Altium.

To maintain collaborative transparency,
Fusion360 should be used, because of the
cloud storage capabilities. We will use
Fusion360 for 3D Modeling.
Altium will allow us to collaboratively
work on PCB design and schematics.
All modules should have proper schemat-
ics starting with a block diagram
and working up to specific component
schematics (Low Level − > High Level).

8

https://docs.google.com/spreadsheets/d/1m2g9ZIqPOLaut9TCZnxkN5tBbNjx5vM4EamFeF2ShgY/edit?usp=sharing

Topic Protocol Standard
Team Meeting
Standard

Team meetings will be conducted
twice a week either in-person (as
needed) or via Discord. Meet-
ing agendas will be developed
through a meeting notes docu-
ment on the shared Google Drive

All team members are expected to at-
tend each meeting during the week un-
less they have communicated that they
will be absent. The first meeting of the
week is expected to be a longer meet-
ing for collaboration and planning out
the week. The second meeting will be a
check-in on progress done for the week.

Project Partner
Communication

The project partner will have of-
ficial updates via email.
Questions, concerns, and meeting
arrangements will be made via
Discord.

The project partner is a member of
our Discord server and encourages us
to reach out with questions and con-
cerns. This will be the primary way
for getting immediate feedback from the
project partner. For official updates on
the project, an email will be drafted,
checked over by the whole team, and
sent.

Table 2: Team Contact Information
Contact Information

Name Email
Andrew Pehrson pehrsona@oregonstate.edu
Nathan Searles searlesn@oregonstate.edu
Nicholas McBee mcbeen@oregonstate.edu
Drew Gehrke gehrkean@oregonstate.edu
Tyrone Stagner stagnert@oregonstate.edu

1.2.1 Communication Analysis

Table 1.2 shows all of the protocols in which the team will convey any sort of communication.
Deliverables which require a group submission must be approved by all members of the team
prior to being submitted to Canvas. These approvals will be sought out using the team’s primary
communication form of Discord. Task management, time logging, and meeting agenda’s will be
documented and tracked through the team’s Trello Board. Final documentation any team member
produces much be compiled using LaTeX in Overleaf. Once finalized and compiled, the file can be
downloaded in the necessary format and upload to the team’s shared Google Drive. In this Drive,
other documents tracking expenses and meeting notes will be stored.

1.3 Gap Analysis

The global autonomous delivery robots market is currently almost 25 million dollars, and is set
to grow to 237 million dollars by 2027 [1]. Currently, autonomous delivery robots mainly deliver
food and packages. Although they claim to be autonomous, many companies still require human

9

monitoring to track their movements. The team plans to enhance and expand the opportunities al-
ready available within the autonomous delivery robots market in two ways: incorporating recycled
technology and striving for full autonomy. In order to incorporate recycled technology, the team
will be using technologies which have supposedly reached their end-of-life cycle. These include
wheelchair frames, batteries, motors, and wheels. With the huge amount of waste accumulated
already, the team hopes to mitigate it as much as possible. When it comes to full autonomy, this
project aims to develop a robot able to operate without monitoring, including when crossing in-
tersections and avoiding obstacles. To help with this existing technology such as Tesla’s Autopilot
[2] and Ford’s Enhanced Park Assist [3] will be used in reference.

At this time, the robot is intended to assist with “last mile” delivery services, but can
always be expanded on in the future. The on-campus mailing service at Oregon State could use
this system to automate the process of delivering packages to various buildings on campus. With
the amount of obstacles, such as people, prevalent in-between buildings this would be a good goal
to reach towards in our project timeline. Potential future customers of this project include mailing
services such as Amazon and USPS. This technology could specifically be useful in large cities with
congestion where pedestrian safety may be a concern.

1.4 Timeline

The infographic below is the project overview summary. It closely follows the course timeline and
summarizes what the project plan will look like over the course of the year.

Figure 1: External Project Timeline.

The Gantt charts below are split by term and outline the specific tasks which will be completed
by different members and what dependencies these tasks entail.

10

Figure 2: Gantt Chart timeline for Fall.

Figure 3: Gantt Chart timeline for Winter.

Figure 4: Gantt Chart timeline for Spring.

1.5 References

[1] Verified Market Research. “Autonomous Delivery Robots Market Size Worth $ 236.59 Million,
Globally, by 2027 at 34.30 % CAGR: Verified Market Research®.” GlobeNewswire News Room,
Verified Market Research, 4 Oct. 2021, https://www.globenewswire.com/news-release/2021/10/04/

11

2308122/0/en/Autonomous-Delivery-Robots-Market-size-worth-236-59-Million-Globally-by-2027-at-
34-30-CAGR-Verified-Market-Research.html.

[2] “Autopilot,” Tesla. [Online]. Available: https://www.tesla.com/autopilot. [Accessed: 18-Oct-
2021].

[3] “Enhanced Active Park Assist: Ford Co-Pilot 360™ technology,” Ford Motor Company. [On-
line]. Available: https://www.ford.com/technology/driver-assist-technology/enhanced-active-park-
assist/. [Accessed: 18-Oct-2021].

1.6 Revision Table

Section 1 - Overview Revisions
Date Revision
10/22/2021 Nick McBee: Review and grammar corrections prior to first submission.
10/16/2021 Nick McBee: Initial draft of Executive Summary created.
10/17/2021 Drew Gehrke: Initial draft of Gap Analysis.
10/18/2021 Nathan Searles: Team Standards and protocols agreed to and appended.
10/25/2021 Drew Gehrke: Added to Gap Analysis and new references.
10/28/2021 Nathan Searles: Added External Timeline.
11/02/2021 Drew Gehrke: Fixed figure / table captions, added Communication Anal-

ysis section, fixed text for the Timeline section
11/09/2021 Nathan Searles: Revised the Executive Summary
11/10/2021 Drew Gehrke: Revised sections in team protocol and standards table,

added two new sections.
11/12/2021 Tyrone Stagner: Revised sections for Gap Analysis. Added another refer-

ence and adjusted the numbers for them.
12/02/2021 Nick McBee: Added contact table to Section 1.2 and current progress to

Executive Summary.
12/03/2021 Drew Gehrke: Revised Gap Analysis to not use first person.
05/05/2022 Drew Gehrke: Modified Executive Summary to reflect final product.
05/05/2022 Nick McBee: Specified ROS2 version.

12

2 Project Scope

In this section, a more detailed outline of the project is described. Highlighted below are the list
of project requirements derived from the Project Partner’s expectations and acceptance criteria.
There is also a risk assessment to guide mitigation tactics and action plans for a variety of potential
situations that could arise during the course of this project. Additionally, a very extensive look
into the potential and likely impacts of an Autonomous Package Delivery Robot is taken; how this
would effect cultural norms, public health, safety, environmental, and economic impacts.

2.1 Requirements

2.1.1 Lock Box

Project Partner Requirement: The robot will have a lock box for transporting the package.

Engineering Requirement: The system will transport a package in a secure container unlocked
via input from authorized users.

Verification Method: Test

Test Process:
1. Container will be opened by the user while the robot is not moving.

2. Package will be inserted into the container and closed.

3. The robot then moves to its destination with package in tow.

4. Once arrived, an authorized user will unlock the robot.

5. Once unlocked, container can be opened and package can be accessed.

Test Pass Condition: The package inside of the container will not be damaged upon arrival. The
container cannot be opened unless unlocked via authorized user without breaking the container or
mechanism. If the lock is unlocked via user input and the package is in tact the condition is met.

2.1.2 Emergency Stop

Project Partner Requirement: The robot should have an easy to access button to stop the
robot in case of an emergency and to assist with testing procedures. The robot must also stop if
a collision is detected.

Engineering Requirement: The system will shut down within 500ms after the emergency button
or collision sensors activate.

Verification Method: Test

Test Process:
1. Begin a recording of the robot.

2. Command the robot to move forward at its standard operating speed with no obstacle
in it’s path.

3. Have someone push the emergency stop button to stop the robot.

4. Review the footage to ensure the robot stops within 500ms of the button being
pushed.

13

5. Repeat the above steps with an obstacle in the path of the bump sensors.

6. Upon collision, ensure the robot stops within 500ms of the bump sensors being
activated.

Test Pass Condition: The system has stopped moving within 500ms of the stop button being
pressed as evidenced by the timer and camera recording. The system also stops 500ms after the
collision has occurred.

2.1.3 Battery Monitoring

Project Partner Requirement: The robot should have a means of monitoring the voltage of
its onboard batteries.

Engineering Requirement: The robot will measure the series voltage of its two lead acid
batteries within an accuracy of 100mV.

Verification Method: Test

Test Process:
1. With the robot turned on and not moving, use a voltmeter to directly measure the

battery voltage.

2. SSH into the Raspberry Pi and navigate to the working directory of the project.

3. Run the command ”ros2 topic echo /battery”.

4. After a brief delay, the battery voltage will be output to the terminal window.

5. Verify that the reported battery voltage is within 100mV of the read voltage.

Test Pass Condition: The reported battery voltage is within 100mV of the value measured with
the voltmeter.

2.1.4 Edge Detection

Project Partner Requirement: The robot should stay on the sidewalk.

Engineering Requirement: The system will determine the bounds of pathways and maintain a
minimum distance of 15cm from the edge of said pathway.

Verification Method: Demonstration

Test Process:
1. Place the robot so that it has a wall on either its left or right.

2. Set a waypoint to where the robot would collide with a wall if it went along a direct
path to the waypoint.

3. Command the robot to traverse to the waypoint.

4. Observe and ensure the robot is capable staying at least 15cm away from the wall
during its traversal.

Test Pass Condition: The robot maintained a minimum distance of 15cm from the pathway’s
edge. The robot did not travel off the bounds of the pathway.

14

2.1.5 Path Following

Project Partner Requirement: The robot should be able to make across campus deliveries.

Engineering Requirement: The system will follow a predefined path to its destination and
deviate from that path by no more than 1 meter.

Verification Method: Test

Test Process:
1. Place a straight strip of tape down on the floor.

2. Align the robot along the strip.

3. Send the command to the robot to drive in a straight line.

4. Stop the robot once it has reached the end of the strip.

5. Identify the starting position from the end of the strip and ensure it is less than 1
meter.

Test Pass Condition: The robot did not deviate more than 1 meter from its path when it arrives
at its destination.

2.1.6 Object Reaction

Project Partner Requirement:The robot should be able to go around stationary objects in its
path.

Engineering Requirement: The system will traverse around stationary objects in its path and
not get closer than 15cm to said object.

Verification Method: Test

Test Process:
1. Place an obstacle at least 5ft in front of the robot. obstacle should be at least 30cm

wide and 90cm tall.

2. Start the robot along a straight path, towards a waypoint, with the obstacle in its
path.

3. Leave enough space on at least one side of the obstacle for the robot to pass

Test Pass Condition: The system traversed around a stationary object in its path and did not
get closer than 15cm to said object.

2.1.7 Data transferred from system to website

Project Partner Requirement: The system receives and transfers data to the website.

Engineering Requirement: The system will transfer IMU data to the website for users to view.

Verification Method: Test

Test Process:
1. Ensure robot system is online and IMU data is being loaded.

15

2. Access the web-page via the IP address of the website.

3. Input IP address and port number into ROS URL input field.

4. Hit ”Toggle Connect” button on website.

5. Ensure all topics are showing on the website.

6. From the console log of the browser, look at the messages being displayed from the
IMU data topic from the system.

Test Pass Condition: The system transferred IMU data to the website for users to view then
the test has passed.

2.1.8 Data transferred from website to system

Project Partner Requirement: The system will receive data from the website.

Engineering Requirement: The system will receive data from website.

Verification Method: Test

Test Process:
1. Ensure robot system is online.

2. Access the web-page via the IP address of the website.

3. Input IP address and port number into ROS URL input field.

4. Hit ”Toggle Connect” button on website.

5. Wait for lockbox to unlock

Test Pass Condition: The system received data from website then the test has passed.

2.2 Design Impact Statement

2.2.1 Public Health, Safety, and Welfare

Safety risks are a major concern with a robot that will be frequently interacting with pedestrians
and vehicle traffic. By introducing more traffic to sidewalks and crosswalks the chance of collisions
increases. Cases have been reported of individuals with accessibility needs being blocked by an
Autonomous Delivery Robot (ADR) [2]. It is crucial that mobile delivery robots be equipped with
the caution and capability to prepare for and react to a multiplicity of unforeseen environmental
factors. That is not to say weather or road conditions, but rather an awareness of physical objects
and especially people (both mobile and stationary) within the robots immediate surroundings. The
real world can provide challenging obstacles to overcome, particularly for machines that funda-
mentally perceive the world in black and white (1 or 0). There are a few design considerations the
team should abide by to mitigate these risks. One is that the robot should move in a predictable
manner at all times. This means reducing the amount of stopping and readjustment of course.
This allows for people in the robot’s surroundings to react with ample time. Another design ad-
dition will be the inclusion of safety sensors to ensure the robot immediately stops its movement
if any physical contact is made. Next, it should never position itself in a place that would prevent
someone, especially a person in a wheelchair, from continuing along their path of travel. This aids

16

to reduce any risk of other pedestrians having to navigate into dangerous situations in which the
robot is an obstacle.

Another safety and welfare concern is in the use of lead acid batteries. Lead is a very toxic
element and has the potential to cause many health issues for the public if not used properly.
Lead poisoning is a prevalent issue for those who work with lead acid batteries. In Bangladesh,
many motor vehicle companies have seen a rise in lead poisoning in their workers. Roughly 97%
of the lead acid batteries used in these facilities comes from recycled batteries and scrap metal [3].
This continued use of the same batteries leads to lead exposure to these workers and eventual lead
poisoning. In this project, the lead acid batteries used are recycled batteries, but these batteries are
the same batteries already equipped in the motorized chair. This lowers the risk of lead exposure
for any users of the robot. To mitigate the need for new batteries and the potential for lead
exposure, a battery monitoring system will be developed to monitor the health of the batteries
and ensure there are no problems with them during continual use of the robot. This will lower the
chance of any lead poisoning from this project as the batteries will be monitored continuously.

2.2.2 Cultural and Social

Autonomous delivery robot technology is becoming a staple of daily life. With Oregon State Uni-
versity as anecdotal evidence to this, students were originally surprised by the fleet of ”Starships”
roaming around the sidewalks on their own accord. However, this system was quick to integrate
with the culture at OSU. In a larger study [3] where consumer acceptance was directly assessed, it
was found that consumer’s attitudes towards ADRs are growing more positive. This is in correla-
tion with the increase in online shopping and delivering goods for physical travel to retail centers.
More individuals are ordering groceries to their homes every year. Amazon alone has seen at least
a 3% growth in retail market share per year, for the last five years [4]. This shift in two consumer
attitudes towards delivered goods shows no immediate signs of decreasing or reversing direction.
Amazon has even shifted their delivery services to an entirely in house operation, as seen with
numerous Prime delivery vans in the area.

2.2.3 Environmental

A major environmental impact of this project is to reduce greenhouse gas emissions using an
electrically powered robot. Last mile delivery accounts for a small percentage of greenhouse gas
emissions in the large aspect of package delivery, but is still a prevalent concern. One study
found that electric delivery trucks making frequent stops in a large city emitted up to 61% fewer
greenhouse gases and at least a third less energy overall compared to their traditional diesel
counterparts [6]. However, these statistics are for delivery truck-sized vehicles which carry and
deliver dozens of packages before returning to a centralized distribution location. With a small
robot that only fits one package at a time it will need to navigate back and forth many times
to achieve the same throughput of a delivery truck. The use of a small robot aids in the battle
against increased congestion of roadways which in turn leads to increased emissions of carbon and
pollutants. This project will reduce this risk by eliminating the need for a vehicle which produces
these emissions. The robot is powered via two lead acid batteries and will not emit any greenhouse
gases. The robots will be used in small range applications and will not have long distances to travel
in order to receive a new package.

17

2.2.4 Economic

Robots displaced 670,000 manufacturing workers between 1990 and 2007 in the U.S alone [7]. This
rate has only increased in the last decade, inspiring political candidates like Andrew Yang to hold
this amongst his top issues to run for office on. Anecdotally we have seen major waves in technology
that extends outside of manufacturing. Self-checkout is a new expectation for any chain grocery
retailer. Tesla has built many of its manufacturing processes upon robotics, seeking to nearly
eliminate the need for people to work on the assembly lines. Likewise, their growing investment
in autonomously driving vehicles will soon displace taxi drivers or even public transportation
operators. Dedicated secretaries to answer phone calls have been displaced by intelligent answering
machines and call routing services. With the latest developments from American company, Boston
Dynamics, and their variety of bipedal, quadrupedal, and track based robots, warehouse jobs
and distribution center positions are also on the way out [8]. However, many of these concerns
are greatly exaggerated, yet it is still estimated that ”9% of all workers in the US face a risk of
automation that exceeds 70%”. This discrepancy is due to the fact that most occupations have
niche tasks which cannot be automated away, meaning most workers cannot be entirely replaced
[9]. However, certain labor categories are at higher risk than others, with delivery drivers falling
within one of those categories. Therefore, it is likely that a commercialized version of this delivery
robot system, alongside other autonomous vehicle systems will contribute to the elimination of
delivery driver positions.

2.3 Risks

Table 3: Risk assessment table
ID Description Category Probability Impact Performance Indicator Responsible Party Action Plan

R1 Vendor Delays Timeline 80% Medium-High
Lead times,
in-stock quantity

Andrew Reduce number of orders

R2 Data Loss Technical 15% Medium-High Repo version checking Tyrone Avoid large gaps in commits

R3
Hardware physically
damaged

Cost/
Technical

20% Low-Medium
Inspection of
components

Drew Reduce potential for breaking

R4
Reckless Endangerment
Liability

Legal 30% High
Situational safety
testing

Nathan
Avoid dangerous interactions
with robot

R5
Computational
Limitations

Technical 7% Medium Process runtime Tyrone Retain

R6
Hardware damage by
improper connections/
use

Cost /
Technical

15% Medium Component failure rate Nick Avoid improper connections

R7 Procrastination Timeline 35% High
Due dates not
being met

Full Team Avoid overwhelming teammates

R8
Communication
disconnect

Technical 65% Medium
Loss of connection
to robot

Andrew Retain

2.4 References

[1] “Risk Managment,” Pace University. [Online]. Available: http://csis.pace.edu/ marchese/SE616/L11New/L11new.htm.
[Accessed: 25-Oct-2021].

[2] E. Ackerman, “My Fight With a Sidewalk Robot,” NCDJ, 19-Nov-2019. [Online]. Available:
https://ncdj.org/2019/11/my-fight-with-a-sidewalk-robot/. [Accessed: 06-Dec-2021].

[3] S. A. Ahmad, M. H. Khan, S. Khandker, A. F. Sarwar, N. Yasmin, M. H. Faruquee, and R.
Yasmin, “Blood lead levels and health problems of lead acid battery workers in Bangladesh,” The

18

Scientific World Journal, vol. 2014, pp. 1–7, Feb. 2014.

[4] A. Pani, S. Mishra, M. Golias, and M. Figliozzi, “Evaluating public acceptance of autonomous
delivery robots during COVID-19 pandemic,” Transportation Research Part D: Transport and
Environment, vol. 89, p. 102600, Dec. 2020.

[5] S. Chevalier, “U.S. Amazon Market Share 2021,” Statista, 13-Oct-2021. [Online]. Available:
https://www.statista.com/statistics/788109/amazon-retail-market-share-usa/. [Accessed: 30-Oct-
2021].

[6] D.-Y. Lee, V. Thomas, and M. Brown, “Electric Urban Delivery Trucks: Energy Use, Green-
house Gas Emissions, and Cost-Effectiveness,” ACS Publications, Jun-2013. [Online]. Available:
https://pubs.acs.org/doi/full/10.1021/es400179w. [Accessed: 29-Oct-2021].

[7] C. C. Miller, “Evidence that robots are winning the race for American Jobs,” The New York
Times, 28-Mar-2017. [Online]. Available: https://www.nytimes.com/2017/03/28/upshot/evidence-
that-robots-are-winning-the-race-for-american-jobs.html. [Accessed: 30-Oct-2021].

[8] O. Garmash, “(PDF) the electronic scientifically and practical journal ‘Intellectualization of
Logistics and Supply Chain Management’, v.1 (2020) ISSN 2708-3195,” ResearchGate. [Online].
Available: https://www.researchgate.net/publication/343724234 The electronic scientifically and
practical journal INTELLECTUALIZATION OF LOGISTICS AND SUPPLY CHAIN MANAGE
MENT v1 2020 ISSN 2708-3195. [Accessed: 30-Oct-2021].

[9] M. Arntz, T. Gregory, and U. Zierahn, “Revisiting the risk of automation,” Economics Letters,
15-Jul-2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S01651765173
02811?casa token=vK XNoLq-2AAAAAA%3A0hDs7hCFyx1ar8gVh66FOr27ukmrPgIwONqPLK0
FKIqM3Hd0JM qBYwSOlvu5SMEiDt5JOm7Yg#fig1. [Accessed: 30-Oct-2021].

19

2.5 Revision Table

Section 2 - Project Scope Revisions
Date Revision
10/29/2021 Nathan Searles: Added engineering tasks
10/29/2021 Tyrone Stagner: Entered data into risk table
10/29/2021 Drew Gehrke: Added Lock Box requirement and formatting for other

requirements
11/02/2021 Drew Gehrke: Added coloration to the risks table
11/12/2021 Nicholas McBee: Overhauled formatting, assigned individual responsible

parties, and revised some indicators.
11/18/2021 Nicholas McBee: Revised Emergency Stop specifications based on project

partner feedback
11/29/2021 Drew Gehrke: Added Probability column to Risk Table
11/30/2021 Drew Gehrke: Reformatted engineering requirements section
12/03/2021 Drew Gehrke: Updated Risk Table action plans
05/04/2022 Drew Gehrke: Updated all requirements to reflect proper testing procedure

and test pass conditions.
05/05/2022 Drew Gehrke: Updated edge detection requirement to reflect proper test-

ing procedure and test pass condition.
05/06/2022 Drew Gehrke: Added Design Impact Statement section

20

3 Top Level Architecture

3.1 Block Diagram

Figure 5: Block diagram of the final APDR system

Figure 6: Black Box Diagram of APDR system

21

3.2 Block Descriptions

3.2.1 Display Data

Champion: Tyrone Stagner
The Display Data block will be the web applica-
tion that displays system diagnostics. Some of
the system diagnostics include the battery sta-
tus, position, and error codes. The position will
be displayed on a map. Battery status will be
displayed showing numbers, and error codes will
be displayed as a number and brief description
of the error.

3.2.2 Edge Detection

Champion: Nathan Searles
The Edge Detection will serve as a precursor to
the Path Generation block within the system.
It will rely on optical sensors to receive environ-
mental data. Using computer vision, this block
will run the Canny Edge detection algorithm [1]
to identify edges within the frames. This array
will be filtered to only identify edges of interest.
From here they will be passed through a trans-
form matrix to convert the vectors into an aerial
view coordinate system.

3.2.3 Imaging Sensors*

Champion: Andrew Pehrson
The The Imaging Sensors block is a sensor block
which contains sensors used for taking in the en-
vironment. A Light Detection and Ranging unit,
or LiDAR, will assist in obstacle detection and
a camera will be used for edge detection, as well
as inspection of surroundings.

3.2.4 Lock Box

Champion: Drew Gehrke
The Lock Box block is a mechanical and enclo-
sure block which will contain a physical box with
an electronically manipulated lock. It will re-
ceive a control signal from the microcontroller
which will disengage the locking mechanism.
Upon receiving the signal, an indicator light will
show that the box is ready to be opened. When

the lid is lifted, a signal will be sent back to the
microcontroller to indicate the lid is still open
and will turn off once the lid is closed.

3.2.5 MCU Driver

Champion: Andrew Pehrson
The microcontroller driver block’s main purpose
is to process and pass on sensor data from the
navigation sensors block to the ROS system.
This block consists of code on an ESP32, fo-
cused around the Rosserial Arduino library. The
Rosserial Arduino library handles all serial com-
munication and allows the microcontroller to be
treated as a node within the ROS architecture.
This allows the ESP32 to post and subscribe
straight to ROS topics.

3.2.6 Motor Controller

Champion: Andrew Pehrson
The motor controller block is a software block
that will pull movement commands and then
transmit the data over serial to the motor con-
troller board. The code for this block will act
as a node in the ROS topic transport protocol
and send data over a UART connection to the
systems motor controller board the SmartDrive-
Duo. The movement commands will be pulled
from the cmd vel topic built into the ros naviga-
tion stack.

3.2.7 Navigation Sensors

Champion: Drew Gehrke
The Navigation Sensors block is a sensor block
used to aid in the navigation and trajectory of
the robot. Output data from various different
sensors will act as inputs for the MCU driver
block in order to gather and translate the data.
Sensors include the GPS used for current po-
sition of the robot and the path generation, an
inertial measurement unit, or IMU, used for cur-
rent orientation and path correction, and emer-
gency bump sensors being used in case the robot

22

hits an obstacle that the avoidance did not ac-
count for.

3.2.8 Obstacle Identification

Champion: Nathan Searles
The Obstacle Identification block is a code block
which adjusts the robot’s current course should
an obstacle be identified. Based on a cost map
created from the LiDAR data, an obstacle will
be identified and a path will be charted to avoid
said obstacle in the Path Generation block. The
cost map will be created from a Robot Operating
System, or RoS, package.

3.2.9 Path Generation

Champion: Nick McBee
The Path Generation block is a code block which
will determine the path of traversal the robot
will take. Based on a set of way points, the robot
will navigate to the specified end goal, adjust-
ing for obstacles when they have been identified.
Path planning between way points and obsta-
cle avoidance will be handled by the algorithms
included in the ROS navigation stack.

3.2.10 Power Management System

Champion: Nick McBee
The Power Management System block is an elec-
trical block which reduces the 24VDC battery

voltage down to 12V, 5V, and 3.3V for various
sensors and electronics to use. The battery volt-
age is also monitored via a voltage divider so the
value can be read by an ADC to track battery
state of charge.

3.2.11 ROS System*

Champion: Andrew Pehrson
The ROS system block represents the set of soft-
ware libraries and tools we are using from the
ROS2 galactic suite. This includes the ROS
topic style Inter-process communication, pack-
age management, and navigation algorithms.
Nothing within the ROS system block was made
by us, it is included since it is central to the work
we did on the robot.

3.2.12 Web Controller

Champion: Tyrone Stagner
The web controller block will be the web ap-
plication that controls the system. The web
controller will send data to the ROS system for
the lockbox, approval, destination, and stop fea-
tures. The lockbox will have the ability to be
unlocked. The approval will send a code to the
ROS system to tell the ROS system it is ok to
proceed. The destination will send a code that
tells the ROS system to go to a predetermined
waypoint. The stop will make send a code to
stop the ROS system.

*Note: These blocks were not validated as they were a part of other blocks within the system.
These serve to show the flow of the system as a whole.

23

3.3 Interface Definitions

The following tables will define the specific properties associated with the interfaces defined in
Figure 5. These definitions will provide a specific profile of the interactions between user input
and output and define the scope of intermediate steps required to fulfill those I/O specifications.

Table 4: Input Interface Definitions

Interface Name Properties

otsd pwr mngmnt systm acpwr Wall Power

• Vnom: 120VAC
• Ipeak: 15A
• Inominal: 500mA
• Other: NEMA 5-15R

otsd wb cntrllr usrin Website User Input

• Other: User can set Approval state
• Other: User can set Stop state
• Other: User can set Lockbox state
• Other: User can set Destination

state

Table 5: Internal Interface Definitions

Interface Name Properties

edg dtctn pth gnrtn data Path Boundary

• Datarate: Minimum of 10 images
per second

• Other: Minimum range of 3 meters
• Other: Image mapping of XY Plane

imgng snsrs obstcl dntfctn data Point Cloud

• Other: Minimum range of 7 meters
• Other: Angular resolution of 2pt-

s/degree
• Other: Rotation Frequency of 10Hz

imgng snsrs edg dtctn data Video Signal
• Video stream
• Datarate: 60 frames per second
• Messages: 720p (5MP)

mc drvr lck bx dsig Unlock Signal
• Logic-Level: Active high for unlock
• Other: dsig returned
• Vnominal: 3.3V

24

Table 6: Internal Interface Definitions, contd.

Interface Name Properties

mc drvr rs systm data Sensor Data

• Messages: Battery voltage
• Messages: Orientation (IMU)
• Messages: Bool (bump sen-

sors)
• Messages: Position (GPS)
• Protocol: ROS Topic

nvgtn snsrs mc drvr data
Positioning and Ori-
entation Data

• Messages: Position (GPS)
• Messages: Orientation (IMU)
• Other: Dsig (bump sensors)

obstcl dntfctn pth gnrtn data Costmap

• Other: XY plane image map-
ping, internal ROS coord. sys-
tem

• Other: Localization for robot
position within 5cm

• Protocol: 2D point cloud of
obstacle locations

pth gnrtn mtr cntrllr data Vector Motor Code

• Messages: Linear velocity
• Messages: Angular Velocity
• Protocol: ROS Topic cmd vel

message

pwr mngmnt systm imgng snsrs dcpwr Imaging Sensor Power

• Vmax: 5.2V
• Vmin: 4.8V
• Ipeak: 3A
• Inominal: 2A

pwr mngmnt systm lck bx dcpwr Lock Power

• Vmax: 12.2V
• Vmin: 11.8V
• Vnominal: 12V
• Ipeak: 2.1A
• Inominal: 2A

pwr mngmnt systm mc drvr data Battery Status

• Other: Vmin of 0.15V
• Other: Vmax of 2.45V
• Protocol: Analog voltage sig-

nal

pwr mngmnt systm nvgtn snsrs dcpwr Nav. Sensor Power

• Vmax: 3.6V
• Vmin: 2.7V
• Ipeak: 100mA
• Inominal: 50mA

25

Table 7: Internal Interface Definitions, contd.

Interface Name Properties

pwr mngmnt systm rs systm dcpwr R. Pi Power

• Vmax: 5.2V
• Vmin: 4.8V
• Ipeak: 3A
• Inominal: 2A

wb cntrllr rs systm data Web-System Interface

• Messages: Lockbox
• Messages: Approval
• Messages: Destination
• Messages: Stop

rs systm pth gnrtn data Waypoint Generation

• Messages: Integer specifying
destination point

• Other: Only send when cur-
rent routing is complete

• Protocol: ROS action goal

rs systm dsply dt data System-Web Data

• Messages: Error data
• Messages: Battery data
• Messages: GPS data
• Protocol: .json file

Table 8: Output Interface Definitions

Interface Name Properties

dsply dt otsd usrout Website User Interface

• Type: string
• Type: numbers
• Usability: 9 out of 10 people are able

to sign in within 5 minutes

lck bx otsd usrout
Lock Box User Inter-
face

• Type: Switch
• Type: Lid
• Type: Light

mtr cntrllr otsd comm
Motor Controller Out-
put

• Messages: Left and right motor
speeds

• Protocol: SmartDriveDuo Serial
simplified

• Protocol: Reverse

26

3.4 References and File Links

3.4.1 References (IEEE)

[1] “Canny edge detection,” OpenCV. [Online]. Available: https://docs.opencv.org/4.x/da/d22/
tutorial py canny.html. [Accessed: 06-May-2022].

3.4.2 File Links

3.5 Revision Table

Section 3 - Top Level Architecture Revisions
Date Revision
11/18/2021 Nathan Searles: Added block diagram
11/19/2021 Drew Gehrke: Added black box diagram and block descriptions.
11/19/2021 Nathan Searles: Added Interface Definitions
11/29/2021 Drew Gehrke: Revised block descriptions
12/1/2021 Nathan Searles: Reformatted Interface Definition table
12/3/2021 Drew Gehrke: Changed interface definition names and added to properties
12/3/2021 Tyrone Stagner: Updated Block diagram
05/05/2022 Drew Gehrke: Updated block diagram picture, updated all block defini-

tions, updated all interface definitions.
05/06/2022 Nathan Searles: Update edge detection block description.
05/06/2022 Nick McBee: Updated Power Management System block description.

27

4 Block Validations

4.1 Motor Controller

4.1.1 Block Overview

The motor controller block is a software block that will be championed by Andrew Pehrson.The
main function of the motor controller block is to pull movement commands and then transmit
the data over serial to the motor controller board. The code for this block will act as a node in
the ROS topic transport protocol and send data over a UART connection to the systems motor
controller board the SmartDriveDuo. The movement commands will be pulled from the cmd vel
topic built into the ros navigation stack. These movement commands will then be transformed
into a left motor speed and right motor speed. Once these speeds are found they will be packaged
according to the serial packetized instructions expected by the SmartDriveDuo. This data will
then be sent over a uart connection to the SmartDriveDuo.

4.1.2 Block Design

Figure 7: Black box schematic of Motor Controller block.

28

Figure 8: Flow Diagram for the Motor Controller block.

4.1.3 Block General Validation

The motor controller code passed down from the previous team is usable but for multiple design
changes and possible areas of improvement we are programming our own. The biggest reason for
us making our own motor controllers is our decision to migrate to ROS2. By migrating to ROS2
we get more tools, better pathing algorithms, and better drivers for cameras over ROS1. This
does however mean that none of the previous team’s code can be used. The code can however
be adapted and I expect to reference their work but another change in design we are making is
using the SmartDriveDuo’s serial packetized protocol instead of the serial simplified protocol the
preexisting code uses. The previous team had decided to use serial communication over PWM since
it wont randomly drive the motors if connection is lost therefore making the robot safer. One issue
they had run into however was that when using serial simplified, which lets you stream command
data to the SmartDriveDuo, is that on start up the robot would follow whatever behaviors the
connection had which in one occasion sent the robot spinning in nonstop circuals. Using serial
packetized will require each command to need a proper header and checksum practically removing
the concern for unexpected behaviors.

29

4.1.4 Block Interface Validation

Table 9: pth gnrth mtr cntrllr data
Protocol: ROS Topic The ROS navigation stack

exports its movement needs
into a topic called cmd vel

The motor controller code
will be a node within ROS
that can subscribe and post
to the needed topics

Messages: Angular velocity An angular velocity vector
is expected to be given from
the cmdveltopic

The motor controller code
will take the angular veloc-
ity vector and use to cal-
culate the difference in left,
right motor speed

Messages: Linear velocity An linear velocity vector is
expected to be given from
the cmd vel topic

The motor controller code
will take the linear veloc-
ity vector and use it to cal-
culate the summed forward
speed of the robot.

Table 10: mtr cntrllr otsd comm
Protocol: Startup proce-
dure

The SmartDriveDuo needs
a 1 second delay on startup
and then a dummy byte of
0x80 to auto fetch the baud
rate

The motor controller code
will run a function that ini-
tializes the SmartDriveDuo
connection before handling
velocity commands.

Protocol: SmartDriveDuo
Serial Packetized

The SmartDriveDuo has
multiple ways to commu-
nicate with it. A PWM
is dangerous if the board
were to disconnect. Se-
rial simplified can also drive
the motors randomly when
garbage values are given.

Communicating with the
SmartDriveDuo using se-
rial packetized ensures that
garbage data is unlikely to
drive the motors since it
needs an acceptable header
to take velocity inputs.

Messages: Left, Right Mo-
tor speeds

These are the expected
command value meanings
where a bit is set for which
motor is being driven and a
value from 0 - 255 is used to
give a throttle percentage

The motor controller code
will process the angular and
linear velocity vectors into a
left and right motor speed.

4.1.5 Block Testing Process

A Raspberry Pi running ROS 2 will be connected to the motor controller over uart serial. The
motor controller code will be saved on the Raspberry Pi

1. Power on the Raspberry Pi

30

2. Run the roscore command to start up ROS

3. Run the motor controller python script

4. Run the teleop twist keyboard script to use manual controls

5. Display the cmd vel topic

6. Drive the robot forward, backwards, left, and right.

4.1.6 References and File Links

References
[1] hannabanana96, “Home · Hannabanana96/mpdr masters wiki,” GitHub. [Online]. Available:
https://github.com/hannabanana96/MPDR Masters/wiki. [Accessed: 05-Feb-2022].

[2] “Teleop twist keyboard,” ROS Index. [Online]. Available: https://index.ros.org/p/teleop twist keyboard/github-
ros2-teleop twist keyboard/. [Accessed: 05-Feb-2022].

4.1.7 Revision Table

Section 4.1 - Motor Controller Revisions
Date Revision
02/04/2022 Andrew Pehrson: Draft Written
02/18/2022 Andrew Pehrson:

4.1.1 Condensed run-ons, 4.1.2 Better label input and output to main
block, 4.1.3 Expand on why ROS2, 4.1.4 ‘protical’ corrected to protocol,
4.1.4 Made startup procedure better quantifiable, 4.1.5 explain roscore,
4.1.5 link code referenced, 4.1.6 more links added

31

4.2 Navigation Sensors

4.2.1 Block Overview

The Navigation Sensors block is a sensor block used to aid in the navigation and trajectory of the
robot. Output data from various different sensors will act as inputs for the MCU driver block in
order to gather and translate the data. Sensors include the GPS used for current position of the
robot and the path generation, an inertial measurement unit, or IMU, used for current orientation
and path correction, and emergency bump sensors being used in case the robot hits an obstacle
that the avoidance did not account for. The block champion for this block is Drew Gehrke.

4.2.2 Block Design

Figure 9: Electrical schematic for the Navigation Sensors block.

Communication between the GPS and IMU sensors will be done over I2C to reduce the number
of wires being used. The ESP32 will pull the information from those sensors and then parse it to
be sent off to the computer to process and eventually RoS will use that data in the various topics.

Note: The ESP32 microcontroller is used in the MCU Driver block. The code used on it will
be developed by myself and another member of the team.

32

Figure 10: Black box schematic of Navigation Sensors block.

4.2.3 Block General Validation

Given many of the components from the work the Project Partner had previously done, these com-
ponents will be utilized to create this block. The GPS and IMU sensors were not fully incorporated
into the system prior to the team inheriting this project. The goal is to establish these components
as core pieces of the overall system to improve the system as a whole. The IMU will be utilized to
aid in correcting drift from the motors during traversal. The GPS will assist in traversal as well
as sending information to the webpage updating the current position of the robot. This sensor
has a 2 meter tolerance which will be observed and used to determine if the outputs are correct.
The bump sensors were also to be used on the project previously, but were not implemented. The
team will utilize these sensors to aid in traversal by providing a digital signal in case of hitting any
obstacles which were not accounted for from the Obstacle Identification block.

4.2.4 Block Interface Validation

33

Table 11: Interface Validation for pwr mngmnt systm nvgtn snsrs dcpwr - Power Input
Vmax: 3.6V The IMU and NEO-M9N

have a maximum voltage
rating of this value. The op-
timal / typical value is 3.3V.

For the BNO080 IMU:
Maximum voltage rating of
3.63V (Figure 6-1, pg 45)

For the NEO-M9N in SMA:
Maximum voltage rating of
3.6V (Table 11, pg 10)

Vmin: 2.7V The minimum voltage for
both the IMU and the NEO-
M9N.

For the BNO080 IMU:
Minimum voltage rating of
1.7V for power supply (Figure
6-2, pg 45)

For the NEO-M9N in SMA:
Minimum voltage rating of
2.7V for power supply (Table
11, pg 10)

Ipeak: 100 mA The NEO-M9N has a peak
current rating of 100 mA
during acquisition of posi-
tion.

For the NEO-M9N in SMA:
Peak current rating of 100
mA (Table 12, pg 11)

Inominal: 50 mA The NEO-M9N has a nomi-
nal current rating of 50 mA
during acquisition of posi-
tion.

For the NEO-M9N in SMA:
Peak current rating of 50 mA
(Table 12, pg 11)

4.2.5 Block Testing Process

1. Apply power to all the sensors

2. Wait for start up configurations to process

• Wait for connection confirmation message from GPS to satellite, allow IMU to gather
initial position.

3. Check for GPS coordinates from serial output

• Compare longitude and latitude values to those from a phone GPS within tolerance.

4. Check for IMU position data from serial output

• Compare values seen to the orientation of the robot in the current position.

5. Check bumpers for digital signal

• Push down switches and see if anything reads in serial output.

6. Power off sensors

34

Table 12: Interface Validation for nvgtn snsrs mc drvr data - Data Management Output
Messages - Orientation
(IMU)

The IMU will return infor-
mation about the current
orientation of the robot us-
ing I2C. This will be used
to determine path genera-
tion and potential drift.

For the BNO080 IMU:
The message is described
as being a series of hex
values indicating the in-
dex, yaw, pitch, roll, and
X- Y-, and Z- accelera-
tions (Section 1.2.5.2, pg
11)

Messages - Position (GPS) These messages will come
from the GPS unit and be
sent to the MCU Driver
block via I2C to determine
current position.

Using a predefined library
(as seen in this example),
the values for longitude, lat-
itude, and number of satel-
lites.

Message - 3.3V DSIG
(Bump Sensors)

A digital signal from the
bump sensors will be trig-
gered when it is hit.

The sensors will be con-
nected to a pull-down re-
sistor GPIO to provide this
functionality. The sensors
will be connected between
GND and the GPIO and
will act as a digital boolean
value.

4.2.6 References and File Links

References

[1] B. Siepert, “Adafruit 9-DOF orientation IMU Fusion Breakout - BNO085,” Adafruit Learn-
ing System.[Online]. Available: https://learn.adafruit.com/adafruit-9-dof-orientation-imu-fusion-
breakout-bno085. [Accessed: 21-Jan-2022].

[2] E. the Sparkiest, “SparkFun GPS NEO-M9N Hookup Guide,” SparkFun. [Online]. Available:
https://learn.sparkfun.com/tutorials/sparkfun-gps-neo-m9n-hookup-guide/all. [Accessed: 21-Jan-
2022].

Files

• NEO M9N GPS Datasheet

• NEO M9N GPS Integration Manual

• BNO080 IMU Datasheet

• Bump Sensor Datasheet

• Project Partner GitHub

35

https://learn.sparkfun.com/tutorials/sparkfun-gps-neo-m9n-hookup-guide/all
https://www.u-blox.com/sites/default/files/NEO-M9N-00B_DataSheet_UBX-19014285.pdf
https://www.u-blox.com/en/docs/UBX-19014286
https://www.ceva-dsp.com/wp-content/uploads/2019/10/BNO080_085-Datasheet.pdf
https://www.onlinecomponents.com/en/omron-electronics/d3v11g2m1c24k-12044985.html?utm_source=digipart&utm_medium=referral&ref=digipartFeed&utm_term=D3V-11G2M-1C24-K
https://github.com/hannabanana96/MPDR_Masters/wiki

4.2.7 Revision Table

Section 4.2 - Nav. Sensors Revisions
Date Revision
01/04/2022 Drew Gehrke: Initial page made, added block overview
01/06/2022 Drew Gehrke: Started Interface Definition section, added references
01/07/2022 Drew Gehrke: Added more to interface tables, added more to other sec-

tions
01/08/2022 Drew Gehrke: Finalized draft sections
01/09/2022 Drew Gehrke: Revised sections to remove LiDAR from block
01/17/2022 Drew Gehrke: Revised interface names with new blocks
01/21/2022 Drew Gehrke: Revised interface properties to include bump sensors, im-

ages for black box and schematic updated. Finalized the interface proper-
ties.

03/05/2022 Drew Gehrke: Added all sections to project document

36

4.3 Edge Detection

4.3.1 Block Overview

The Edge Detection will serve as an important precursor to the Path Generation block in the
Autonomous Package Delivery Robot. It will be able to determine the bounds of travel for the
robot by using optical sensors and computer vision algorithms to identify the edges of sidewalks,
roadways, and paths. The output interface will be a cost map that the robot will interpret for its
path generation algorithms.

Since it is unknown what other obstructions may be present in a pre-designated path it is
important that the output offer flexibility. This is why a cost map will be used. This will provide
the path generation algorithm with variability in it’s final path. Actual edges of a given path will
be determined as absolute boundaries. The Edge Detection block should avoid letting the robot
travel even near to these boundaries at all costs, and thus variable padding from these edges will
be introduced. This block is championed by Nathan Searles

4.3.2 Block Design

The following figures will highlight how the Edge Detection block will function as a part of the
larger project. The black box diagram below shows the block as well as the input and output
interfaces associated with this block.

Figure 11: Edge Detection Black Box Diagram.

The flowchart in Figure 2 displays the internal behavior of the Edge Detection Blocks. Each
of these elements will be described below.

Image Preprocessing: Once a frame from the camera is streamed into the Edge Detection
program, there are a few processes that must happen before the edge detection can be processed.
These include resizing the individual frame to maximize performance as well as converting the
image to grayscale and also piping the image into the GPU for all subsequent calculations to be
processed on.

37

Contour Detection: This is the heart of the program. Using OpenCV, there are multiple
options for edge detection algorithms; the Sobel algorithm and the Canny algorithm. From pre-
liminary testing the Canny algorithm will be better for the scope of this block and thus it will be
utilized. A grayscale image will be passed into this algorithm and with a couple adjustments, a
black and white image will be output, where all edges in the original image are converted to white
curves.

Curve Connection: Next, any segmented curves without the area of interest must be joined
together to create a cleaner image. With large edges spanning the length of the image, the Canny
algorithm will output a series of segmented lines that represent a single edge, so it will be useful to
join these lines together. This can be done by projecting lines from the endpoints of the existing
ones and where two projects closely align in angle or intersection, the endpoints of these lines can
then be assumed to be a part of the same edge.

Nearest Edge Algorithm: In practicality, the robot only needs to be aware of the edges
within 2 - 4 meters from its body, so the area of interest should be determined in this step.

Cost Map Generation: As mentioned in the Block Overview, to provide the Path Generation
Block with flexibility a cost map should be created from the edges. The absolute position of the
edges should be treated as a wall, where the robot is able to approach within 10 - 20 centimeters of
it but not touch or pass over this line. The Cost Map Generation step will also project the image
into the horizontal plane for seamless interpretation in the path generation algorithm.

Figure 12: Edge Detection Internal Diagram.

4.3.3 Block General Validation

This block will be receiving individual frames from the Imaging module at a rate of 30 frames per
second. The function of the Edge Detection block is to interpret the camera data and stream a set
of curves of interest to the edge detection to the Path Detection block. This block will successfully
do this by performing an edge detection algorithm on each individual frame and then subsequently
isolating the curves of interest that have been determined to correspond with sidewalk edges.
The Edge Detection block will translate these sets of 2D curves into a point cloud consistent with
an overhead view (XY Plane) [2]. The edges are treated as solid impermeable objects in this case
and when used to create a cost map consistent with the performance of the Object Identification
block, the Path Generation module will be able to interpret both of these datasets simultaneously.
The output of this block will happen at frequency no lower than one sixth that of the camera input.

38

Since our camera will be outputting images at 60 frames per second [1], the output of the Edge
Detection block will be no less than 10 frames per second. This will allow the data to be validated
against the previous and following frames to ensure proper detection and minimize errors.

4.3.4 Block Interface Validation

Table 13: Interface Validation for imgng snsrs edg dtctn data: Input
Resolution: 720p This resolution is consistent

with the included camera
module in the Jetson TX2
Devkit that the team is em-
ploying.

The Jetson TX2 that the
team is employing for usage
on the robot has a specific
interface port for the cam-
era in use.

Framerate: 60fps. This framerate is consistent
with the included camera
module in the Jetson TX2
Devkit.

The Jetson TX2 that the
team is employing for usage
on the robot has a specific
interface port for the cam-
era in use.

39

Table 14: Interface Validation for edg dtctn pth gnrtn data: Output
Frame Orientation: XY
Plane

The output must be in the
form of an aerial view of the
detected edges

The bottom of any input
will have a known location
relative to the robot’s posi-
tion. To translate the orig-
inal image to an XY pla-
nar view (aerial) a simple
calculation will be done by
analyzing the convergence
of the perceived sidewalk
edges.

Data rate: 10 datasets / sec This data rate will supply
the path generation block
enough datasets to avoid in-
terrupting other processes.

After dividing the input
frame rate to account for
image processing delays, the
Jetson TX2 will be able pro-
cess and output 10 sets of
edge detected and oriented
data per second.

Minimum Range: 3 meters Generated data beyond this
range will become unreli-
able. The Path Genera-
tion block will only require
this much advance notice on
necessary corrections.

Data from an entire frame
may be used to deter-
mine parallel convergence
for mapping the frame to
the XY plane. After these
computations, data points
that exceed this range will
be masked out from the out-
put data set.

4.3.5 Block Testing Process

1. Connect the camera module to the Raspberry Pi and connect to the Pi through SSH.

2. Apply power with the supply.

3. Launch the first test script (Range and Mapping).

4. Allow the camera to capture a still image.

5. Verify that the output image is properly mapped to a plane parallel with the Earth’s surface.

6. Verify that the output edges are within the 3 meter range.

7. Launch the second test script (Data rate)

8. Holding the camera 0.5 meters above the ground at an angle of 15 degrees beneath the
horizon moves the camera in a horizontal path.

9. The test script will run for 5 seconds.

40

10. Verify that 50 data sets were output from the module (60 fps * 5 sec / 6).

4.3.6 References and File Links

[1] “E-CAM52A MI5640 MOD - 5MP OV5640 MIPI camera module,” 5MP MIPI Camera —
CSI-2 Camera Module. [Online]. Available: https://www.e-consystems.com/5MP-MIPI-camera-
module.aspkey-features. [Accessed: 22-Jan-2022].

[2] “Using calibration to translate video data to the Real World,” NVIDIA Developer Blog, 25-Aug-
2020. [Online]. Available: https://developer.nvidia.com/blog/calibration-translate-video-data/.
[Accessed: 22-Jan-2022].

4.3.7 Revision Table

Section 4.4 - Power Management Revisions
Date Revision
01/07/2022 Nathan Searles: Initial draft created.
01/19/2022 Nathan Searles: Revised block testing process and general validation
01/21/2022 Nathan Searles: Further revisions based on peer feedback
03/06/2022 Nathan Searles: Merged into Project Document.

41

4.4 Power Management System

4.4.1 Block Overview

The Power Management System block steps down and regulates the robot’s 24V battery power for
use in other subsystem’s sensors and electronics, as well as a battery voltage monitor so that the
admin can know when the robot needs to be recharged. To accomplish this, the block contains
three buck converter power supplies; one is configured for outputting 5V, one for 3.3V, and the
other for 19V. The battery voltage monitor utilizes a voltage divider to reduce the supply voltage
to a safe level below 2.45V for it to be digitized by an ADC in the Motor Controller Driver. This
block is championed by Nicholas McBee.

4.4.2 Block Design

Figure 13: Black box schematic of Power Management System block.

4.4.3 Block General Validation

The voltage monitor used within the block meets the needs of the system by scaling the voltage
down to a level of 2.0-2.8V, which is safe to measure with a microcontroller’s internal ADC. The
internal ADC is used to reduce the cost and part count of the system compared with a discrete
ADC component. This monitor is also capable of achieving the 100mV accuracy range outlined in
the Engineering Requirements.
The 3.3V and 5V buck converter circuitry was chosen for its relative simplicity and availability of
premade modules. The controller IC is rated for the output currents necessary for the system’s
electronics, and a variable output voltage evaluation board is cheap and available, so its operation
can be verified before the team has to commit to the creation of a PCB. The 19V buck converter
was also chosen for simplicity and compatibility with other components. Its main purpose is to
power the Jetson TX2 developer kit which functions as the project’s main processing system.
The Jetson included an AC adapter which outputs 19VDC at up to 4.74A. A step down DC-DC

42

Figure 14: Electrical schematic for the Power Management System.

converter with the same output is necessary for the Jetson board to function on therobot’s 24V
batteries while mobile. Designing such a high power supply was determined to be difficult and
time consuming, so the team elected to purchase a module with the necessary specifications. The
manufacturing and shipment of these components will cause some environmental harm as discussed
in the Design Impact Statement, but this risk has been considered necessary for the project to
progress.

43

4.4.4 Block Interface Validation

Table 15: Interface Validation for otsd pwr mngmnt systm dcpwr: Input
Inominal: 1.3A The combined expected

nominal power output of
the 5V and 19V supplies is
29W, which corresponds to
an input current of 1.3A.

The 24V lead acid battery
source is capable of supply-
ing large amounts of current
to operate the wheelchair
batteries. The current re-
quirements for the other
electronics is quite small in
comparison.

Ipeak: 4.4A The combined expected
peak power output for the
5V and 19V supplies is
105W, which corresponds
to an input current of 4.4A.

The peak load is more con-
siderable than it is for nom-
inal, but this peak current
is only expected to occur at
startup when the motors are
not moving and there is no
other load on the batteries.

Vmax: 26V The nominal lead acid bat-
tery voltage is 12V, and
this value should never ex-
ceed about 12.6V when fully
charged. With two batteries
in series, this gives a voltage
of 25.2V, which is rounded
up to 26V

The onboard lead acid bat-
teries for the system fol-
low the described character-
istics, which are explain in
detail in [1].

Vmin: 22V A lead acid battery with
a voltage of 11V is sig-
nificantly discharged and
should be recharged before
continued use to maximize
its lifespan. This is the
minimum battery voltage
the system is therefore ex-
pected to operate at before
recharging.

The onboard lead acid
batteries follow the typical
characteristics described
and will need charging at
22V.

44

Table 16: Interface Validation for pwr mngmnt systm mc drvr data: Output
Protocol: Analog voltage
signal

The Motor Driver block in-
cludes an ADC that will
digitize an analog voltage
corresponding to battery
voltage.

The voltage divider input
is connected directly to the
batteries, and so its output
voltage will be a function of
battery voltage.

Vmin: 0.15V The Motor Driver block in-
cludes an ADC that will
digitize an analog voltage
corresponding to battery
voltage.

At the minimum battery
voltage of 22V, the output
voltage signal will be 2.0V.

Vmax: 2.45V This is the highest volt-
age which the Motor Driver
ADC can reliably read from.

At the maximum battery
voltage of 26V, the output
voltage signal will be 2.36V.

Table 17: Interface Validation for pwr mngmnt systm imgng snsrs dcpwr: Output
Inominal: 2A The sum of the nominal cur-

rent draw of all the 5V sen-
sors and electronics is ex-
pected to be below 2A.

The LM2596 is capable of
a nominal output current of
3A (7.6 Electrical Charac-
teristics, pg6).

Ipeak: 3A The sum of all the peak cur-
rent draws of all 5V sen-
sors and electronics is not
expected to exceed 3A.

The LM2596’s is capable of
up to 3A of constant current
output, and at least 3.6A of
peak current (7.6 Electrical
Characteristics, pg6).

Vmax: 5.2V The supply voltage for the
sensors cannot exceed 5.5V;
5.2V was chosen to provide
safety margin.

LM2596 5V output mode
will not exceed 5.2V (7.6
Electrical Characteristics,
pg6).

Vmin: 4.8V LiDAR sensor unit requires
at least 4.8V to function
properly.

LM2596 5V output mode
will not drop below 4.8V
(7.6 Electrical Characteris-
tics, pg6).

4.4.5 Block Testing Process

Voltage Monitor Test Procedure:

1. Use a lab bench power supply to provide input otsd pwr mngmnt systm dcpwr with 22V.

2. Use a voltmeter to verify pwr mngmnt systm mc drvr data is within 0.15V-2.45V.

3. Set the input voltage to 26V.

4. Use the voltmeter to verify pwr mngmnt systm mc drvr data is still within 0.15V-2.45V

45

Table 18: Interface Validation for pwr mngmnt systm rs systm dcpwr: Output
Inominal: 2.5A Little information on the

Jetson TX2’s power require-
ments is available; this is a
rough estimate of its typical
current draw at 19V.

ME-24S1905 power con-
verter has a nominal
current output up to 5A
(Uxcell product page,
Specifications).

Ipeak: 4.72A This is the current rating
of the Jetson’s supplied AC
adapter, which presumably
accounts for peak current
draw + safety margin.

ME-24S1905 power con-
verter’s nominal current
exceeds current rating of
original supply.

Vmax: 19.4V Conservative estimate of
Jetson TX2 supply voltage
range.

ME-24S1905 power con-
verter has voltage regula-
tion below 1%, correspond-
ing to an output shift of
190mV (Uxcell product
page, Specifications).

Vmin: 18.8V Conservative estimate of
Jetson TX2 supply voltage
range.

ME-24S1905 power con-
verter has voltage regula-
tion below 1%, correspond-
ing to an output shift of
190mV (ME-24S1905 prod-
uct page, Specifications).

Table 19: Interface Validation for pwr mngmnt systm nvgtn snsrs dcpwr: Output
Inominal: 50mA This is the expected current

draw of all navigation sen-
sors using 3.3V.

The LM2596 is capable of
a nominal output current of
3A (7.6 Electrical Charac-
teristics, pg6).

Ipeak: 100mA This is the peak expected
draw of all navigation sen-
sors using 3.3V.

The LM2596’s is capable of
up to 3A of constant current
output, and at least 3.6A of
peak current (7.6 Electrical
Characteristics, pg6).

Vmax: 3.6V This is the maximum rec-
ommended supply voltage
of the navigation sensors.

LM2596 3.3V output mode
will not exceed 3.432V (7.6
Electrical Characteristics,
pg6).

Vmin: 2.7V This is the minimum recom-
mended supply voltage of
the navigation sensors.

LM2596 3.3V output mode
will not drop below 3.168V
(7.6 Electrical Characteris-
tics, pg6).

Power Source Voltage Test Procedure:

46

1. Use a lab bench power supply to provide input otsd pwr mngmnt systm dcpwr with 22V.

2. Use a voltmeter to verify that pwr mngmnt systm nvgtn snsrs dcpwr is within 2.7-3.6V

3. Use a voltmeter to verify that pwr mngmnt systm imgng snsrs dcpwr is within 4.8-5.2V.

4. Use a voltmeter to verify that pwr mngmnt systm rs systm dcpwr is within 18.8-19.2V.

5. Repeat steps 2 through 4 with otsd pwr mngmnt systm dcpwr set to 26V.

Power Source Current Test Procedure:

1. Connect a 50mA load to pwr mngmnt systm nvgtn snsrs dcpwr.

2. Connect a 2A load to pwr mngmnt systm imgng snsrs dcpwr.

3. Connect a 2.5A load to pwr mngmnt systm rs systm dcpwr.

4. Supply otsd pwr mngmnt systm dcpwr with 22V.

5. Let system run for at least 30 seconds. Verify all current loads are satisfied.

6. Repeat steps 1 through 5 with otsd pwr mngmnt systm dcpwr set to 26V.

Power Source Peak Current Test Procedure:

1. Connect a 100mA load to pwr mngmnt systm nvgtn snsrs dcpwr.

2. Connect a 3A load to pwr mngmnt systm imgng snsrs dcpwr.

3. Connect a 4.72A load to pwr mngmnt systm rs systm dcpwr.

4. Supply otsd pwr mngmnt systm dcpwr with 22V.

5. Let system run for at least 3 seconds. Verify all current loads are satisfied.

6. Repeat steps 1 through 5 with otsd pwr mngmnt systm dcpwr set to 26V.

4.4.6 References and File Links

References
[1] R. Perez, “Batteries lead-acid battery state of charge vs. voltage,” 1993. [Online]. Available: .
[Accessed: 07-Jan-2022].

Files

• LM2596 datasheet: https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=1641572364177

• Premade LM2596 module: https://www.amazon.com/Valefod-Efficiency-Voltage-Regulator-
Converter/dp/B076H3XHXP

• Uxcell (Eccanixity) ME-24S1905 power module: https://www.amazon.com/uxcell-Converter-
Regulator-Waterproof-Transformer/dp/B01H97ETVM

47

https://www.scubaengineer.com/documents/lead_acid_battery_charging_graphs.pdf

4.4.7 Revision Table

Section 4.4 - Power Management Revisions
Date Revision
01/08/2022 Nick McBee: Initial draft created.
01/20/2022 Nick McBee: Modified General Validation.
01/21/2022 Nick McBee: Revised test procedure.
03/06/2022 Nick McBee: Merged into Project Document.

48

4.5 Web Controller

4.5.1 Block Overview

The web controller block will be the web application that controls the system. The web controller
will send data to the ROS system for the lockbox, approval, destination, and stop features. The
lockbox will have the ability to be unlocked. The approval will send a code to the ROS system to
tell the ROS system it is ok to proceed. The destination will send a code that tells the ROS system
to go to a predetermined waypoint. The stop will make send a code to stop the ROS system. This
block is championed by Tyrone Stagner.

4.5.2 Block Design

Figure 15: Black box schematic of Web Controller Block.

49

Figure 16: Design flowchart for the Web Controller Block.

50

4.5.3 Block General Validation

Robot Operating System which is known as ROS is used in conjunction with a module ros-
bridge suite for the web application to meet the block’s needs for data communication to the
system. The rosbridge suite module helps the website to send ROS.Message which will be des-
tination, stop, lockbox, and approval data [1]. Utilizing the rosbridge suite module will provide
a WebSocket interface to ROS from the web application. Using a WebSocket interface will help
lower latency by keeping a persistent connection to the ROS system. After a connection is made
it will communicate with ROS topics on the system to transfer data between the system and web
application.

4.5.4 Block Interface Validation

Table 20: Interface Validation for otsd wb cntrllr usrin: Input
Other: User can set Lock-
box state

The user needs to be able to
unlock the system.

The code for this block will
allow the user to choose
from a dropdown menu the
state of the Lockbox.

Other: User can set Desti-
nation state.

The user needs to be able to
choose a destination.

The code for this block will
allow the user to choose
from a dropdown menu pre-
defined numbers for the des-
tination state.

Other: User can set Ap-
proval state.

The user needs to be able to
approve the system to pro-
ceed.

The code for this block will
allow the user to choose
from a dropdown menu the
approval state.

Other: User can set Stop
state.

The user needs to be able to
stop the system.

The code for this block will
allow the user to choose
from a dropdown menu the
stop state.

51

Table 21: Interface Validation for wb cntrllr rs systm data: Output
Messages: Destination The web application needs

to send a destination mes-
sage back to the system
once the user provides
where the ROS system need
it to go.

The code for this block
will send a destination us-
ing ROSLIB.Message to the
ROS system.

Message: Stop The web application needs
to send a stop message back
to the ROS system once
the user provides that com-
mand.

The code for this
block will send a stop
ROSLIB.Message to the
ROS system.

Message: Lockbox The web application needs
to send a lockbox message
back to the ROS system
once the user provides that
command.

The code for this block
will send a lockbox
ROSLIB.Message to the
ROS system.

Message: Approval The web application needs
to send an approval mes-
sage back to the ROS sys-
tem once the user provides
that command.

The code for this block
will send an approval
ROSLIB.Message to the
ROS system.

4.5.5 Block Testing Process

1. Open the web application on a computer.

2. Enter a username and user password.

3. Click on button that reads “Sign in”.

4. Click on a drop-down box and select a number from destination box.

5. Click on a drop-down box and select yes from the stop box.

6. Click on a drop-down box and select yes from the approval box.

7. Click on a drop-down box and select open from the lockbox box.

8. User will click on a submit button.

9. On the Raspberry Pi, open the ROS topics on the corresponding to the destination, stop,
approval, and lockbox to view activity.

4.5.6 References and File Links

[1] “rosbridge suite?,” GitHub, 04-Apr-2019. [Online]. Available: https://github.com/Robot
WebTools/rosbridge suite. [Accessed: 18-Feb-2022].

52

4.5.7 Revision Table

Section 4.4 - Power Management Revisions
Date Revision
01/30/2022 Tyrone Stagner: created block 2.
02/01/2022 Tyrone Stagner: made some revisions to the file in section 4.13, 4.14, and

4.15
02/12/2022 Tyrone researched ROS2-Bridge more and made revisions to 4.13
02/18/2022 Tyrone made some revisions to the file in section 4.13, 4.14, and 4.15
02/19/2022 Tyrone made some revisions to the file in section 4.15 , from the feedback

given in the block 2 reviews.
03/06/2022 Tyrone Stagner: Merged into Project Document

53

4.6 Lock Box

4.6.1 Block Overview

The Lock Box block is a mechanical and enclosure block which will contain a physical box with an
electronically manipulated lock. It will receive a control signal from the microcontroller which will
disengage the locking mechanism. Upon receiving the signal, an indicator light will show that the
box is ready to be opened. When the lid is lifted, a signal will be sent back to the microcontroller
to indicate the lid is still open and will turn off once the lid is closed. The block champion for this
block is Drew Gehrke.

4.6.2 Block Design

Figure 17: Black box schematic of Lock Box block.

4.6.3 Block General Validation

This block will allow for safe travel of any sort of payload or package the robot will transport. The
components being used for the locking mechanism will be low cost as they are all found on Amazon.
The box itself will be an ice box which will be customized to house the components necessary for
the locking mechanism and the other hardware to meet the interfaces. The locking mechanism
requires 12V in order to be powered. To do this, the microcontroller will need to control a relay.
This relay will be able to handle the higher current and potential circuit needed for the lock itself.
Other indicators will be used to allow for the user to know when the lid is opened still so they can
fully close it.

54

Figure 18: Electrical schematic for the Lock Box block.

4.6.4 Block Interface Validation

Table 22: Interface Validation for mc drvr lck bx dsig - Relay control signal input
Logic Level: Active high The relay will enable when

a logic HIGH signal is ap-
plied and will disengage the
locking mechanism.

A GPIO pin on the ESP32
will provide the necessary
digital signal to trigger the
relay.

Other: dsig returned A switch will be triggered
to indicate the lid has been
opened and will be returned
to the microcontroller.

Connecting the switch in a
normally closed configura-
tion will allow for the func-
tionality needed. So when
the lid is opened, the circuit
will close, driving the GPIO
pin low as an indication.

Vnominal: 3.3V The locking mechanism is
expecting 12V but will be
controlled via a relay which
will take in 3.3V.

The GPIO pin on an ESP32
is capable of outputting
3.3V nominal, which is
enough to trigger the relay.

55

Table 23: Interface Validation for pwr mngmnt systm lck bx dcpwr - 12V input
Vmax: 12.2V The rated voltage of the

locking mechanism is 12V.
It can most likely handle
2% more than that nominal
voltage.

The power management
system will be capable
of providing the required
voltage of 12V, and the lock
will operate if it were to go
up slightly.

Vnominal: 12V The locking mechanism is
rated to operate at 12V.

According to the Amazon
description, the control sig-
nal must provide 12V in or-
der to unlock the system.

Vmin: 11.8V The rated voltage of the
locking mechanism is 12V.
It can most likely handle 2%
less of that nominal voltage.

The power management
system will be capable
of providing the required
voltage of 12V, and the lock
will operate at slightly less.

Ipeak: 2.1A The locking mechanism is
rated to pull 2A nomi-
nally. The lock is capable
of pulling slightly more cur-
rent and thus must be able
to handle this slight differ-
ence.

The PMS system is able to
output 2A nominally and
can handle slightly more.

Inominal: 2A The locking mechanism is
rated to pull 2A of current.

The PMS system will be
able to very briefly (0.2s for
the lock) allow the current
draw to unlock the lock.

Table 24: Interface Validation for lck bx otsd usrout - Box Indicators output
Type: Light Indicator light will flash on

when the lock is disengaged
and the lid can be opened.

An LED will be wired to the
GPIO pin and will flash on
when the signal goes high,
indicating the lock has dis-
engaged.

Type: Switch Switch is used to indicate
the lid being opened or
closed.

The switch will be con-
nected in a normally closed
configuration and will indi-
cate when the lid is open.

Type: Lid The lid is the way to access
the package which the robot
is delivering.

The robot requires a way to
securely hold a package and
the lid will the only way to
access the package.

56

4.6.5 Block Testing Process

1. Start with lid closed and lock engaged

2. Trigger the unlock signal (apply 3.3V to the relay to close relay)

• Check for light turned on to indicate unlocked

• Open the lid and check the switch has disengaged

• Look for indicator to see the lid is opened

3. Close lid and ensure switch has engaged

• Check that the lid open indicator is gone

• Ensure indicator light is off to show lock is engaged

4.6.6 References and File Links

References
[1] “ESP32 pinout reference: Which GPIO pins should you use?,” Random Nerd Tutorials. [On-
line]. Available: https://randomnerdtutorials.com/esp32-pinout-reference-gpios/. [Accessed: 18-
Feb-2022].

Files

• Locking Mechanism

• Relay Module

• Ice Box

4.6.7 Revision Table

Section 4.6 - Lock Box Revisions
Date Revision
02/02/2022 Drew Gehrke: Initial document created, description added, black box fig-

ure added
02/03/2022 Drew Gehrke: Added content to multiple sections
02/16/2022 Drew Gehrke: Modified content for input signal, added links to parts
02/17/2022 Drew Gehrke: Added more content to each of the sections
02/18/2022 Drew Gehrke: Final touches added to interface definitions, pictures, and

validation paragraphs
03/05/2022 Drew Gehrke: Added all sections to project document

57

https://www.amazon.com/Atoplee-1pcs-Intelligent-Electric-Cabinet/dp/B01IBEVV0Y/ref=sr_1_7?crid=DXLK0DE6YMQ1&keywords=5v+electric+lock&qid=1644372972&sprefix=5v+electric+lock%2Caps%2C111&sr=8-7
https://www.amazon.com/Channel-Optocoupler-Isolated-Control-Arduino/dp/B07XGZSYJV/ref=sr_1_3?crid=2NESJBP7J9MUO&keywords=3.3v+Relay&qid=1645060892&sprefix=3.3v+relay%2Caps%2C124&sr=8-3
https://www.amazon.com/Coleman-Performance-Cooler-48-Quart-Blue/dp/B0000DH4LT/ref=sr_1_6?crid=8WHHI6OZCDNZ&keywords=ice+box&qid=1645062958&sprefix=ice+bo%2Caps%2C174&sr=8-6

4.7 Path Generation

4.7.1 Block Overview

The Path Generation block is a code block which will determine the path of traversal the robot
will take. Based on a set of way points, the robot will navigate to the specified end goal, adjusting
for obstacles when they have been identified. Path planning between way points and obstacle
avoidance will be handled by the algorithms included in the ROS navigation stack. The block
champion is Nicholas McBee

4.7.2 Block Design

Figure 19: Black box schematic of Path Generation block.

The Path Generation block acts as an interface between the high level system controls, the
imaging sensor outputs, and the ROS navigation algorithms. Therefore, its main purpose is to
provide the ROS system with the sensor data and waypoint navigation goals as described below.

Peseudocode:

1. START: Wait for rs systm pth gnrtn data to get DELIVERY DEST.

2. When DELIVERY DEST received, send navigation system obstcl dntfctn pth gnrtn data
and edg dtctn pth gnrtn data as sensor inputs. Set pth gnrtn mtr cntrllr data as motor
output.

3. for i = num waypoints in DELIVERY DEST:

(a) NAV GOAL = DELIVERY DEST Waypoint[i]

(b) while[!nav to waypoint done()]

(c) i++

4. Navigation to destination complete. Repeat process at step one.

58

4.7.3 Block General Validation

Each delivery destination route is split into intermediate waypoints to simplify the processing re-
quired and provide direction to the autonomous path generation. Specifically, the waypoints can
be placed at regular intervals on sidewalks so that the path planner algorithms will not inadver-
tently choose to generate paths along roads, and requires it to properly cross intersections. This
also guarantees more consistency in routes, making testing and debugging easier.

4.7.4 Block Interface Validation

Table 25: Interface Validation for obstcl dntfctn pth gnrtndata : Input
Other: Minimum Range: 3
meters

This is roughly the min-
imum scanning distance
needed for the robot to see
upcoming obstacles and
safely react.

Experience from the previ-
ous team suggests this range
is sufficient for navigating
around obstacles.

Other: Image mapping: XY
plane, internal ROS coordi-
nate system

The robot only needs to
navigate along a 2D plane,
and an internal coordinate
system simplifies the inter-
action between all sensors
and navigation code.

This is the format used by
the ROS navigation system,
and has already been con-
firmed through simulation.

Protocol: 2D point cloud of
obstacle locations

Standard method of obtain-
ing and representing wall
and obstacle locations in
ROS systems.

ROS navigation stack ac-
cepts the input of point
clouds from sensors [1].

4.7.5 Block Testing Process

1. Load Gazebo simulation software and Rviz visualization tools.

2. Launch ROS navigation system and interface code. Provide simulated obstcl dntfctn pth gnrtn data
and edg dtctn pth gnrtn data to map simulated environment. Verify that the test data is
within interface property expectations.

3. Manually send destination value to rs systm pth gnrtn data.

4. Observe velocity values being sent to pth gnrtn mtr cntrllr data and the simulated robot
navigating towards the destination. The block is performing as expected when the simulated
robot navigates to the sequence of waypoints specified in the interface code.

59

Table 26: Interface Validation for edg dtctn pth gnrtn data : Input
Datarate: Minimum: 10 im-
ages / second

This is considered a fair
compromise value between
required performance and
system processing resources
throughput.

10 updates/second of the
sidewalk edge location
should be more than fast
enough to keep pace with
the robot’s max speed of
0.5m/s.

Other: Image Mapping:
XY Plane

The robot only needs to
navigate along a 2D plane,
and an internal coordinate
system simplifies the inter-
action between all sensors
and navigation code.

This is the format used by
the ROS navigation system,
and has already been con-
firmed through simulation.

Other: Minimum Range: 3
meters

This is roughly the min-
imum scanning distance
needed for the robot to see
upcoming obstacles and
safely react.

Experience from the previ-
ous team suggests this range
is sufficient for navigating
around obstacles.

Table 27: Interface Validation for pth gnrtn mtr cntrllr data : Output
Messages: Floating point
velocity values

Floating point values pro-
vide ample precision and
range needed to represent

ROS Geometry Twist mes-
sage type uses floating point
data types [2].

Other: Contains X, Y and
rotational values

Velocity needs to be ex-
pressed as its X and Y com-
ponents, and the angle the
robot is facing also needs to
be described.

ROS Geometry Twist mes-
sage type stores linear ve-
locity components and an-
gular position [2].

Protocol: ROS Topic
cmd vel message

This is the standard mes-
sage format expected by the
motor controller.

ROS navigation system uses
the cmd vel topic for motor
control outputs [3].

4.7.6 References and File Links

References

[1] “Setting up sensors,” Setting Up Sensors - Navigation 2 1.0.0 documentation. [Online]. Avail-
able: https://navigation.ros.org/setup_guides/sensors/setup_sensors.html. [Accessed:
05-Feb-2022].

[2] “Understanding Ros 2 topics,” Understanding ROS 2 topics - ROS 2 Documentation: Galactic
documentation. [Online]. Available: https://docs.ros.org/en/galactic/Tutorials/Topics/

Understanding-ROS2-Topics.html?highlight=velocity+topic#ros2-interface-show. [Ac-
cessed: 05-Feb-2022].

60

https://navigation.ros.org/setup_guides/sensors/setup_sensors.html
https://docs.ros.org/en/galactic/Tutorials/Topics/Understanding-ROS2-Topics.html?highlight=velocity+topic#ros2-interface-show
https://docs.ros.org/en/galactic/Tutorials/Topics/Understanding-ROS2-Topics.html?highlight=velocity+topic#ros2-interface-show

Table 28: Interface Validation for rs systm pth gnrtn data : Input
Messages: Integer specify-
ing destination point

The possible delivery desti-
nation locations is a finite
list of spots around build-
ings on campus; each spot
can simply be enumerated
for referencing.

DELIVERY DEST variable
in pseudocode stores the de-
sired destination point

Other: Will only send when
current routing is complete

It does not make sense
to start a new delivery
while another one is still in
progress, so the main code is
not expected to give a new
delivery route until the cur-
rent one is complete.

Code only gets new delivery
destination after arriving at
the current one.

Protocol: ROS topic mes-
sage

Internal communication be-
tween ROS nodes is mostly
commonly accomplished
through topic messages.

Code gets the new delivery
location from ROS message.

[3] “Nav2,” Nav2 - Navigation 2 1.0.0 documentation. [Online]. Available: https://navigation.
ros.org/index.html?highlight=motor. [Accessed: 05-Feb-2022].

4.7.7 Revision Table

Section 4.7 - Path Generation Revisions
Date Revision
02/04/2022 Nick McBee: Initial draft created.
02/18/2022 Nick McBee: Added additional details to Block Testing Plan.
03/06/2022 Nick McBee: Merged with Project Document.

61

https://navigation.ros.org/index.html?highlight=motor
https://navigation.ros.org/index.html?highlight=motor

4.8 Obstacle Identification

4.8.1 Block Overview

The Object Identification block will serve a precursor to the Path Generation block in the Au-
tonomous Package Delivery Robot. LiDAR is the primary hardware component associated with
this block. This block will be able to determine the bounds of travel by using the onboard LiDAR
sensor to create a point cloud based on physical objects in the vicinity of the robot. The output
interface will be a cost map that the robot will interpret for its path generation algorithms. The
LiDAR sensor will be mounted on the robot and analyze a planar slice of the world around the
robot. This planar slice will be level to the ground and provide information about obstacles within
line-of-sight of the LiDAR module. For redundancy the data collected from the LiDAR will be
cross referenced with the visual data collected by the camera module in the Path Generation block.
The program will be written with Python and run in real-time within the ROS Navigation stack.
This block is championed by Nathan Searles.

4.8.2 Block Design

The following figure will highlight how the Object Identification block will function as a part of
the larger project. The black box diagram in the figure below shows the block as well as the input
and output interfaces associated with this block. In the next figure, the primary functions of this

Figure 20: Black box schematic of Obstacle Identification Block.

block are described. The goal is to provide the robot with information to keep it from colliding
with objects in its surroundings. The LiDAR will provide a set of points to the Python program
where the interpretation will occur. Filtering out noisy data will be important for creating the
curves bordering objects.

When creating the curves, there are a few important considerations. Given the height of the
LiDAR and its limited ability to only scan a planar slice of its environment, some pieces of data
will need to be projected to a model of potential objects. If the LiDAR were to scan 4 discrete

62

“packets” of points that could predictably form a connected shape, that shape must be used for
the cost map creation. Examples of this would include chair legs, mail dropoff boxes, and tables.

After object curves have been created, the cost map must be generated. This will be done
internally with the ROS packages for the LiDAR [1]. A cost map depth of 15cm has been deter-
mined to be adequate for this application. A larger range could prevent usable paths from being
generated on a standard 4ft sidewalk, while a smaller range could lead to collisions.

Figure 21: Object Identification Design.

4.8.3 Block General Validation

This block will receive a set of points from the LiDAR sensor. These individual points will be
compiled into a single data set known as a point cloud. For this application, the point cloud will
not take the form of a cloud, but rather a surface view of the robot’s surroundings.

LiDAR Orientation: This aspect of the design required much deliberation from the team
to determine the best implementation for the LiDAR module. The LiDAR module that will be
present on the robot does not offer variable angles, and thus the LiDAR can only detect a planar
slice of 3D points in its point cloud. In order to maximize the usable range of this data, the LiDAR
will be mounted level to the base of the robot. This will return a 2D point cloud around the robot

LiDAR Height: Since the LiDAR will only collect data on the XY Panar slice of its surround-
ings, LiDAR height is an important variable that will determine what information can be accessed.
The minimum mounting height available on the robot is approximately 30cm, as everything be-
neath that is chassis. Obstacles come in a variety of forms, but the critical points of interest are
pedestrians, large animals, and walls. By mounting the LiDAR close to this minimum mounting
height, the robot will have an awareness of most obstacles that exist at its height. Objects out
of range of the robot’s height can be disregarded as they will not cause a collision. The major
concern is objects that are in the robots path, yet lower than the LiDAR’s perspective. These will
be handled in combination with the visual imaging sensors (cameras).

Data Integrity: Given the limited scope of data that will be detected by the LiDAR element,
noise will present itself obviously and can be disregarded. This “noise” will be in the form of
lonesome points in the cloud. Any significant objects will have multiple points associated with
them, and these points can be analyzed across frames to ensure they are not noise.

Software Implementation: The analysis of this data is equally important to the collection
of it. The SLAMTEC RPLIDAR S1 that will be used in this project has support drivers available
[1] for ROS2.

Data Interpretation: The data being read into this block should be relatively clean. The
main function of this block will be the generation of a cost map to be utilized by the path generation
block. This primarily involves analyzing the point cloud and registering which points correlate to
an object, using these points to create a curve, and outputting a set of ranges from each object,

63

that the robot can feasibly travel. Touching the object should be interpreted as forbidden, while
maintaining a distance of ¿15cm should be preferred, but flexible depending on other inputs.

4.8.4 Block Interface Validation

Table 29: Interface Validation for imgng snsrs obstcl dntfctn data : Input
Rotation Frequency: 10Hz The cost map must be fre-

quently updated during op-
eration and travel of the
robot.

10Hz is the median range
for the LiDAR module that
is used in this project. The
range spans 5-15Hz. Using
the middle of that range will
improve stability.

Minimum Range: 10m The data must be of ad-
equate range for predictive
modeling in the path gener-
ation block.

The LiDAR module has a
range of 40m for pure white
surfaces and 10m for black
surfaces.

Minimum Angular Resolu-
tion: 2 points / degree

The collected data must
contain enough useful
points to extrapolate
curves.

The LiDAR samples at
9.2kHz in 10Hz rotation
mode: producing 1 pt /
0.391°

Table 30: Interface Validation for imgng snsrs obstcl dntfctn data : Input
Data rate: 5Hz min The cost map must be fre-

quently updated during op-
eration and travel of the
robot.

The full rotation sampling
frequency for the LiDAR
will be 10Hz. An output fre-
quency of 5Hz accounts for
lag in cost map generation

Minimum Radius: 10m The data must be of ad-
equate range for predictive
modeling in the path gener-
ation block.

The LiDAR module has a
range of 40m for pure white
surfaces and 10m for black
surfaces.

Field of View: 180° The robot will reverse in
manually guided emergency
scenarios. For autonomous
travel, the robot will travel
forward and perform sta-
tionary turns. The robot
must be aware of its sur-
roundings before traversing.

The LiDAR is capable of
360° data capture. The lim-
iting variable is the mount-
ing position on the robot.
Being a primary sensor, the
LiDAR will be positioned
to provide 180° minimum
viewing angle.

4.8.5 Block Testing Process

1. Connect the LiDAR to the Raspberry Pi 4 with USB.

64

2. SSH into the Raspberry Pi and open the ROS Vizualization GUI.

3. Place the LiDAR 10 meters away from a 10cm wide object in low lighting conditions.

4. Observing the ROS Gui, verify that the object has been detected with a minimum of 2 data
points. This verifies Angular Resolution and Radius.

5. Slide the LiDAR across a table-top surface for 10 seconds, traversing more than 2 feet from
its original location.

6. Using the ROS Vizualization GUI, verify that the cost map updates with a frequency greater
than 5Hz (50 frames minimum).

7. Placing the LiDAR in a stationary position on a table-top, place a flat obstruction object
(notebook, piece of paper, etc.) flush against 1 edge of the LiDAR enclosure.

8. Verify that more than 180° of cost map data is being returned.

4.8.6 References and File Links

[1] A. H, “Allenh1/rplidar ros,” GitHub, 27-May-2021. [Online]. Available: https://github.com/
allenh1/rplidar ros. [Accessed: 05-Feb-2022].

[2] T. Huang, “RPLIDAR S1 portable TOF Laser Range Scanner parameters,” SLAMTEC. [On-
line]. Available: https://www.slamtec.com/en/Lidar/S1Spec. [Accessed: 05-Feb-2022].

4.8.7 Revision Table

Section 4.8 - Obstacle Identification Revisions
Date Revision
02/04/2022 Nathan Searles: Initial Document creation
02/15/2022 Nathan Searles: Added figures, design revisions according to feedback
02/18/2022 Nathan Searles: Interface property revisions and testing process revisions
03/06/2022 Nathan Searles: Merged into project document

65

4.9 Display Data

4.9.1 Block Overview

The Display Data block will be the web application that displays system diagnostics. Some of
the system diagnostics include the battery status, position, and error codes. The position will be
displayed on a map. Battery status will be displayed showing numbers, and error codes will be
displayed as a number and brief description of the error.

4.9.2 Block Design

Figure 22: High level diagram of display data block.

66

Figure 23: Flow chart of the web application.

67

4.9.3 Block General Validation

This block, shown as a high level block diagram in Figure 1, will display the battery data, GPS
data, and error data to the user after logging into the web application. The web application will
display the stored data that is gathered from the file. After logging in the application parses the
data file then tries to load each portion of information to display to the user. If data from the file
is unable to load an error will be displayed to the user. This is shown in Figure 2 as a flow chart.
The web application will be hosted on Amazon web servers. Amazon guarantees a 99.99 percent
up-time reliability for EC2 instances during a given month[1]. If Amazon web servers were to go
down, we have the ability to host the web application on a home server.

4.9.4 Block Interface Validation

Table 31: Interface Validation for Dsply dt otsd usrout
Type: numbers The block will receive nu-

merical data for displaying
to the user.

The code for this block will
take in numerical data and
parse the data for display.

Type: string The block will receive string
data for displaying to the
user.

The code for this block will
take string data and parse
the data for display.

Usability: 9 out of 10 people
are able to sign in within 5
minutes

Ninety percent was used be-
cause it is what is required
for the usability test to pass.

The system will be evalu-
ated by at least 10 users
and ninety percent of the
users will be able to cre-
ate an account and see data
displayed on a computer
within 5 minutes.

Table 32: Interface Validation for Rs system dsply dt data
Message: Battery data The user needs to be able to

see the status of the battery
data.

The code for this block will
display the battery data to
the user.

Message: GPS data The user needs to be able to
see the GPS location of the
system.

The code for this block will
display GPS data to the
user.

Message: error data The user needs to be able to
see the error codes and a de-
scription of the error code.

The code for this block will
display error code to the
user.

Protocol: file The block data needs to be
parse from a file to display
data to the user.

The file will store data that
will be parsed for display.

68

4.9.5 Block Testing Process

1. User will open the web application on a computer.

2. User will enter a username and user password.

3. User will click on button that reads “Sign in“.

4. User will be able to see the battery data, and IMU data.

4.9.6 References and File Links

References
[1] “Is the amazon web services cloud reliable?,” Today I Learned Cloud, 08-Jul-2020. [Online].
Available: https://www.todayilearnedcloud.com/Is-The-Amazon-Web-Services-Cloud-Reliable/.
[Accessed: 22-Jan-2022].

4.9.7 Revision Table

Section 4.9 - Display Data Revisions
Date Revision
01/07/2022 Tyrone Stagner: created block 1 revision
01/15/2022 Tyrone Stagner: made adjustment via feed back
01/19/2022 Tyrone Stagner: made adjustments to 4.9.4 via feed back
01/20/2022 Tyrone Stagner: Tyrone made adjustments to sections 4.9.1 through 4.9.3.

The block has changed names and the interface properties. The block
diagram and description was updated to reflect the changes.

01/21/2022 Tyrone Stagner: made changes to sections 4.9.4 though 4.4.6 to update
interface definitions and why they exist. The test steps were updated to
verify the interface definitions

03/06/2022 Tyrone Stagner: Added to main document and made some changes to the
sections 4.9.1 through 4.9.6

03/06/2022 Tyrone Stagner: Adjusted layout of section so it would be cleaner looking

69

https://www.todayilearnedcloud.com/Is-The-Amazon-Web-Services-Cloud-Reliable/

4.10 Micro-controller Driver

4.10.1 Block Overview

The microcontroller driver block is championed by Andrew Pehrson and its main purpose is to
process and pass on sensor data from the navigation sensors block to the ROS system. This block
consists of code on an ESP32, focused around the Rosserial arduino library. The Rosserial Arduino
library handles all serial communication and allows the microcontroller to be treated as a node
within the ROS architecture. This allows the ESP32 to post and subscribe straight to ROS topics.
Some code that will be used from the navigation sensors block are some structs to hold sensor data,
a function to initialize the sensors, and some functions to populate the structs with current sensor
data. This block will also have some code that reads in a voltage from the power management
block with the ESP32’s ADS. The last component of the block is that there will be a GPIO pin
programmed to unlock the lock box block via a relay within the block

4.10.2 Block Design

Figure 24: Black box schematic of Micro-controller Driver block.

Steps for posting data:
void setup()

1. Initialize Sensors

void loop()

1. Read data from nav sensors

2. Read ADC from power management block

3. Turn ADC into voltage

4. Package data

70

5. Post to relevant ROS topics

Steps for controlling lock box:
void setup()

1. Create handler function for topic message

2. Create subscriber for the lock box controller topic

3. Attache subscriber to node hander

void loop()

1. spin the node handler once

4.10.3 Block General Validation

The data transmission method being used for this block meets the needs of the system by utilizing
ROS’s capabilities to its fullest. Previous designs of this block were going to have a second script
on the ROS system side that would act as the ROS node to post and subscribe to topics. Using
the Rosserial Arduino library allows us to reduce the time to program this block, the amount of
time data is passed around, and also integrates the ESP32 seamlessly into ROS’s architecture.

The ADC reading of voltage from the power management block has been designed to require
very little parts (just a voltage divider) and using the ESP32’s 12 bit ADC we can get an accurate
reading of the batteries voltage level.

The GPIO control of the lock box will simplify the amount of hardware needed on the robot.
This also means that the ESP32 will be the robots main interface with the hardware such as
sensors, actuators, lights, and any other addition the robot might see in the future. This allows
the main computer being used for ROS to be upgraded without needing a change in ROS drivers.

71

4.10.4 Block Interface Validation

Table 33: pwr mngmnt systm mc drvr data
Protical: Analog Voltage
Signal

This method of reading
battery voltage was cho-
sen since a microcontrollers
ADC can be used to read
changes in voltage

The ESP32 has a 12 bit
ADC that has variable at-
tenuation modes to get the
most resolution along with
the ability to calibrate.

Vmin: 0.15V This is the ESP32’s mini-
mum readable voltage with
the largest attenuation be-
ing used

Since a voltage divider in-
side the power management
block is being designed to
wear as long as the batteries
are connected the voltage
should never get this low let
alone below this value

Vmax: 2.45V This is the ESP32’s max
readable voltage with the
largest attenuation being
used

It is being assumed that the
voltage divider inside the
power management block is
being designed to output a
voltage lower then this level
when the battery is fully
charged

Table 34: nvgtn snsrs mc drvr data
Messages:Orientation
(IMU)

The IMU inside the navi-
gation sensor block will be
giving data relevant to the
robots orientation

The code will take in IMU
readings from a function be-
ing provided by the naviga-
tion sensors block and store
this data in a struct

Messages: Position (GPS) The GPS inside the navi-
gation sensor block will be
giving data relevant to the
robots position

The code will take in GPS
readings from a function be-
ing provided by the naviga-
tion sensors block and store
this data in a struct

Other: Dsig (bump sensors) The bump sensors inside the
navigation sensor block will
give a digital signal when it
has collide with something

The ESP32 will read in this
digital signal using a GPIO
pin and be able to read if a
collision has occurred

72

Table 35: mc drvr lck bx dsig
Logic-Level: Active High
for unlock

This is the signal that will
be needed to activate a relay
that will unlock the lock box

The ESP32 will be able to
output this signal through
one of its GPIO pins

Vnominal: 3.3v This is the voltage needed
to activate a relay that will
unlock the lock box

The ESP32 will be able to
supply this voltage through
one of its GPIO pins

Other: Dsig returned (lid
closed)

This is a return signal from
the lock box block and
will tell the microcontroller
whether the box is locked or
not

The ESP32 will be able to
receive this signal through
one of its GPIO pins

Table 36: mc drvr rs systm data
Protical: ROS Topic This is the communication

protocol used throughout
ROS and will allow the mi-
crocontroller to share data
with the whole system

The Rosserial arduino li-
brary will allow the ESP32
to directly subscribe and
post to topics over serial
with ROS

Messages: Orientation
(IMU)

The orientation data from
the IMU is needed by the
ROS system for the naviga-
tion stack

The ESP32 will be able to
pull data from the struct of
IMU data and post it to the
necessary ROS topic

Messages: Position (GPS) The position data from the
GPS is needed by the ROS
system for the navigation
stack and webpage

The ESP32 will be able to
pull data from the struct of
GPS data and post it to the
necessary ROS topic

Messages: Battery Voltage The battery voltage data is
needed by the webpage to
display battery percentage

The ESP32 will be able to
pull data from the ADC and
post it to the necessary ROS
topic

Messages: Bool (Bump sen-
sors)

The bump sensor data is
needed by the ROS system
to tell if there has been a
collision

The ESP32 will be able
to pull the data from the
GPIO pin and post it to the
necessary ROS topic

4.10.5 Block Testing Process

The ESP32 will be plugged into a Raspberry Pi running ROS. Test functions will be used that are
the same format as the functions being provided by the navigation sensors block but will provide
predetermined incrementing data.

1. Power on the Raspberry Pi

2. Open the navigation sensor data test topic on the Raspberry Pi to view activity

73

3. Check if data is being posted to the topic and match the data expected out of the test
functions

4. Now open the battery voltage data test topic on the Raspberry Pi to view activity

5. Connect a DC power supply to the ADC that will be used by the power management block

6. Very the voltage from the supply between 1-2v

7. Check is change in voltage is reflected by topic

8. Finally connect DMM to GPIO that will be used by the lock box block

9. Manually change the lock box test topic on the Raspberry Pi

10. Check if change is reflect on the GPIO output

4.10.6 References and File Links

References
[1] “Analog to digital converter (ADC),” ESP. [Online]. Available: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/api-reference/peripherals/adc.html. [Accessed: 22-Jan-2022].

[2] “Wiki,” ros.org. [Online]. Available: http://wiki.ros.org/rosserial arduino/Tutorials/Blink.
[Accessed: 22-Jan-2022].

4.10.7 Revision Table

Section 4.1 - Motor Controller Revisions
Date Revision
1/07/2022 Andrew Pehrson: added interfaces to motor controller block
1/09/2022 Andrew Pehrson: Block changed to emergency sensors
1/17/2022 Andrew Pehrson: Block changed to database
1/19/2022 Andrew Pehrson: Block changed to data management
1/21/2022 Andrew Pehrson: Block changed to microcontroller driver

74

5 System Verification Evidence

5.1 Universal Requirements

5.1.1 The system may not include a breadboard

The system does not contain a breadboard. A custom PCB was developed for this project and all
module connections are made JST connectors, USB, threaded coaxial cable or similar connection
types. All connections will be reliable for extended periods of time. No video or picture currently
available (link will be here when it is).

5.1.2 The final system must contain both of the following: a student designed PCB
and a custom Android/PC/Cloud application

Figure 25: APDR PCB designed by Drew Gehrke and Andrew Pehrson

Figure 25 shows the footprint of the PCB designed for this project. It combines multiple blocks
from the entire project into a consolidated package. The Power Management System block is
present here with circuits utilizing the LM2596 chips to provide a 3.3V and 12V voltage output
as well as a battery monitoring spot on the ESP32. The modules from the Navigation Sensors
block (the ESP32, GPS, and IMU) are attached to the PCB as well via female headers and traces
to each of the wires for the I2C communication. Also, there are several JST connectors at the
bottom for the various GPIO connections, including the bump sensors, the relay to power the
locking mechanism on the lock box, and the lock box switch which indicates the open lid being

75

Figure 26: APDR PCB schematic

open. The schematic for the PCB can be seen in figure 26.

The Cloud application is using Amazon Web Servers to host a website. The Server is running
Node.js and React. The website will connect to the system via a Web-Socket and communicate to
different services that are running on the system.

5.1.3 If an enclosure is present, the contents must be ruggedly enclosed/mounted as
evaluated by the course instructor

All electronics are ruggedly enclosed within a 3d printed enclosure located on the underneath of
the lock box. This enclosure is secured onto the frame of the robot. This enclosure will contain
the PCB and Raspberry Pi. It is built so that if the robot is shaken, no electronics will dismount
and fall off the robot.

5.1.4 If present, all wire connections to PCBs and going through an enclosure (en-
tering or leaving) must use connectors

Bellow is a table that shows each connection and how this connection meets this requirement...

76

Connection Justification
GPS Antenna This connection will be straight to the GPS mod-

ule that is mounted against the side wall of the
enclosure and allows access from the outside

PI4 to ESP32 This connection will be internal to the enclosure
and be done with a USB cable

Battery to PCB This connection will be done using a JST-VH on
the inside of the enclosure and a JST-SM connec-
tor on the outside of the enclosure

Bump Stop These connections will be done with JST-PH con-
nectors at the wall of the enclosure and on the
PCB

Lock Box This connections will be done with JST-PH con-
nectors at the wall of the enclosure and on the
PCB

LIDAR This connection will be done with a JST connector
into the enclosure and then a USB to the PI

5.1.5 All power supplies in the system must be at least 65% efficient

All of the power supplies used by the system and implemented on the PCB are contained within
the Power Management System block described in Section 4.4 of this document. All of these power
supplies are implemented with the LM2596 switch-mode buck converter controller with varying
external inductor values to achieve different output voltages.
One of the greatest advantages to switching power supplies is their high conversion efficiency rat-
ings, with ratings exceeding 90% being relatively common, although this efficiency tends to drop
off as the difference between the input and output voltage increases.
Three LM2596 circuits are used to produce outputs of 3.3V, 5V, and 12V from a nominal input of
24V. The LM2596 datasheet (Section 4.4.6) states there is a typical output efficiency of 73% for
the 3.3V supply, 80% for 5V, and 90% for 12V.
These results have been confirmed through testing, with efficiencies never falling below%. There-
fore, all power supplies are considered to be at least 65% efficient based on these specifications and
evidence.

5.1.6 The system may be no more than 50% built from purchased modules

Differentiating between what was feasible to construct from scratch in the given time frame and
what needed to be sourced externally took some deliberation at the start of this project. The
APDR system is extremely complex project, the justification for the authorship of each block will
be described in the table below.

77

Table 37: Team Authorship Verification
Project Block Justification of Team Authorship
Motor Controller This block consists of motors, wheel encoders, and a microcon-

troller to interpret the input from the wheel encoders and output
a control signal to the motors. The protocol for communicat-
ing with the motors from the ESP32 needed to be created from
scratch. The wheel encoders also required a custom mounting
setup. The code to interface the input received from the encoders
with the output being sent to the motors in order to prevent drift
required custom development. The motors are an inherent com-
ponent to the recycled electric wheelchair base that is a staple
to this project, so they shall be discounted. Given the software
interfacing with both modules and the custom mounting of the
wheel encoders, this block can be said to contain greater
than 50% custom developed modules

Navigation Sensors The GPS is a purchased module. The software to interpret the
coordinate data in the intended fashion was developed by the
team. The IMU sensor is a purchased module. The code to
read this IMU data and extract what we needed to interface
with ROS was developed within the team. The bumpers were
fully developed within the team. The mounting mechanism was
designed internally and the software to interpret the inputs from
the buttons was developed internally. This block contains
less than 50% purchased modules.

Edge Detection The camera module used as an input to this block is purchased.
All software to convert the camera data to a useful coordinate
system, filter images, isolate edges, and output data was devel-
oped internally. This block contains more than 50% inter-
nally developed modules

Power Management System The power management system was developed to take an input
of 22-26V and output 3.3V, 5V, and 20V across 3 different rails.
The additional functionality of being able to determine charge
level of the batteries is output on a different rail. All circuitry
was developed internally and placed on the custom PCB. This
block was 100% developed internally and contains no pur-
chased modules.

Web Controller This software-exclusive block was designed to fit the exact needs
of our project. This block contains no purchased modules

The tables show that blocks vary greatly in the amount of purchased modules that were imple-
mented in their design. It can be safely inferred that the project in its entirety contains no more
than 40% purchased modules.

78

Table 38: Team Authorship Verification Cont.
Project Block Justification of Team Authorship
Lock Box A custom enclosure and interface with an electronically triggered

actuator were developed for this block. The magnetic actuator
was purchased. All software for interfacing with this actuator
was developed internally. The physical lockbox was constructed
from a premade box with enough custom mounting development
to be considered not a purchased module. This block contains
no more than 50% purchased modules.

Path Generation This software-exclusive block was built to interface the team’s
custom mixture of sensors and design goals. This includes the
ability to create waypoints from predefined destinations and us-
ing GPS, IMU and LiDAR data to accurately localize the APDR
within it’s environment and bring it to its destination. This
block contains no purchased modules.

Obstacle Identification This block utilizes the RPLIDAR S1. Developing the software
to interface with this device and produce the desired costmaps
and environment awareness was done internally. This block
contains 50% purchased modules.

5.2 Lock Box

5.2.1 Lock Box

Project Partner Requirement: The robot will have a lock box for transporting the package.

Engineering Requirement: The system will transport a package in a secure container unlocked
via input from authorized users.

5.2.2 Testing Process

1. Container will be opened by the user while the robot is not moving.

2. Package will be inserted into the container and closed.

3. The robot then moves to its destination with package in tow.

4. Once arrived, an authorized user will unlock the robot.

5. Once unlocked, container can be opened and package can be accessed.

5.2.3 Testing Evidence

When the user sends an input to the robot, the locking mechanism disengages and the box is
capable of being opened. Evidence of this can be found here.

79

https://drive.google.com/file/d/12NrzkiJTg4ZF_lFDkp4NOw3qLXEzDxXJ/view?usp=sharing

5.3 Emergency Stop

5.3.1 Emergency Stop

Project Partner Requirement: The robot should have an easy to access button to stop the
robot in case of an emergency and to assist with testing procedures. The robot must also stop if
a collision is detected.

Engineering Requirement: The system will shut down within 500ms after the emergency button
or collision sensors activate.

5.3.2 Test Process:

1. Begin a recording of the robot.

2. Command the robot to move forward at its standard operating speed with no obstacle
in it’s path.

3. Have someone push the emergency stop button to stop the robot.

4. Review the footage to ensure the robot stops within 500ms of the button being
pushed.

5. Repeat the above steps with an obstacle in the path of the bump sensors.

6. Upon collision, ensure the robot stops within 500ms of the bump sensors being
activated.

5.3.3 Testing Evidence:

The system is capable of stopping movement within 500ms of the stop button or bump sensors
being pressed as evidenced by the recordings found here and here.

5.4 Battery Monitoring

5.4.1 Battery Monitoring

Project Partner Requirement: The robot should have a means of monitoring the voltage of
its onboard batteries.

Engineering Requirement: The robot will measure the series voltage of its two lead acid
batteries within an accuracy of 100mV.

5.4.2 Test Process:

1. With the robot turned on and not moving, use a voltmeter to directly measure the
battery voltage.

2. SSH into the Raspberry Pi and navigate to the working directory of the project.

3. Run the command ”ros2 topic echo /battery”.

4. After a brief delay, the battery voltage will be output to the terminal window.

5. Verify that the reported battery voltage is within 100mV of the read voltage.

80

https://drive.google.com/file/d/18EyCm_K2wui9Fik6FYuKtYmX-qoPuMXK/view?usp=sharing
https://drive.google.com/file/d/12OjpLlxx3aYYg2ne47wJgylQyC5ici-Y/view?usp=sharing

5.4.3 Testing Evidence:

The reported battery voltage is within 100mV of the value measured with the voltmeter. Link to
evidence can be found here.

5.5 Edge Detection

5.5.1 Edge Detection

Project Partner Requirement: The robot should stay on the sidewalk.

Engineering Requirement: The system will determine the bounds of pathways and maintain a
minimum distance of 15cm from the edge of said pathway.

5.5.2 Test Process:

1. Place the robot so that it has a wall on either its left or right.

2. Set a waypoint to where the robot would collide with a wall if it went along a direct
path to the waypoint.

3. Command the robot to traverse to the waypoint.

4. Observe and ensure the robot is capable staying at least 15cm away from the wall
during its traversal.

5.5.3 Testing Evidence:

The team was not able to implement this feature into the final system. However, much of the
support for this requirement can be implemented by future teams. Link to a simulation showing
the requirement can be found here.

5.6 Path Following

5.6.1 Path Following

Project Partner Requirement: The robot should be able to make across campus deliveries.

Engineering Requirement: The system will follow a predefined path to its destination and
deviate from that path by no more than 1 meter.

5.6.2 Test Process:

1. Place a straight strip of tape down on the floor.

2. Align the robot along the strip.

3. Send the command to the robot to drive in a straight line.

4. Stop the robot once it has reached the end of the strip.

5. Ensure that the robot did not deviate from its path by 1 meter.

81

https://drive.google.com/file/d/13zwLyZVIK0QP2Cm_ETNfEJJZVIlLltO9/view?usp=sharing
https://drive.google.com/file/d/1KS5Ni3yK3CyNmUHDqZ_pNDjqmwssNngp/view?usp=sharing

5.6.3 Testing Evidence:

The robot did not deviate more than 1 meter from its path when sent forward. Link to the evidence
can be found here.

5.7 Object Reaction

5.7.1 Object Reaction

Project Partner Requirement: The robot should be able to go around stationary objects in
its path.

Engineering Requirement: The system will traverse around stationary objects in its path and
not get closer than 15cm to said object.

5.7.2 Test Process:

1. Place an obstacle in front of the robot.

2. Mark a 15cm radius around the obstacle.

3. Command the robot straight towards the object and navigate around the obstacle.

4. Command the robot to be back on course for its straight path.

5. Ensure the robot was able to avoid the object outside of the 15cm radius and continue
its path.

5.7.3 Testing Evidence:

The system traversed around a stationary object in its path and did not get closer than 15cm to
said object. Link to the evidence can be found here.

5.8 Data transferred from website

5.8.1 Data transferred from website to system

Project Partner Requirement: The system will receive data from the website.

Engineering Requirement: The system will receive data from website.

5.8.2 Test Process:

1. Ensure robot system is online.

2. Access the web-page via the IP address of the website.

3. Input IP address and port number into ROS URL input field.

4. Hit ”Toggle Connect” button on website.

5. Wait for lockbox to unlock.

82

https://drive.google.com/file/d/14d0penYdRFp7Jn5HHA5EtjYrVQJwcxog/view?usp=sharing
https://drive.google.com/file/d/14jDWSG4XBWWP9sU_2af3l6QdfCU8bERt/view?usp=sharing

5.8.3 Testing Evidence:

The system received data from website then the test has passed. Link to evidence can be found
here.

5.9 Data Transferred from System

5.9.1 Data transferred from system to website

Project Partner Requirement: The system receives and transfers data to the website.

Engineering Requirement: The system will transfer IMU data to the website for users to view.

5.9.2 Test Process:

1. Ensure robot system is online and IMU data is being loaded.

2. Access the web-page via the IP address of the website.

3. Input IP address and port number into ROS URL input field.

4. Hit ”Toggle Connect” button on website.

5. Ensure all topics are showing on the website.

6. From the console log of the browser, look at the messages being displayed from the
IMU data topic from the system.

5.9.3 Testing Evidence:

The website is capable of showing all currently running topics and IMU message data is seen in
the console log. Link to evidence can be found here.

5.10 References and File Links

5.10.1 References (IEEE)

5.10.2 File Links

5.11 Revision Table

Section 3 - Top Level Architecture Revisions
Date Revision
3/11/2022 Drew Gehrke: First two requirements added and section 5.1 updated
4/18/2022 Drew Gehrke: Added all other requirements and formatted for sections
4/21/2022 Drew Gehrke: Removed one requirement which shouldn’t have been added.
5/4/2022 Drew Gehrke: Revised test procedures and testing evidence for all require-

ments.
5/6/2022 Nick McBee: Updated Power Supply Efficiency testing evidence.

83

https://drive.google.com/file/d/14Mj7RbTuU6Z4_Y9ea1-569yE9fhfBiba/view?usp=sharing
https://drive.google.com/file/d/14NYMu22avmd-eUnhGjvgVC06WUiFS-Xh/view?usp=sharing

6 Project Closing

6.1 Future Recommendations

6.1.1 Technical Recommendations

One problem the team faced was the lack of computing power from the onboard computer selection.
The Raspberry Pi 4 has a base clock 1.5 GHz [1] which is substantial for most situations. Off-
boarding calculations onto the ESP32 microcontroller proved to be very beneficial, but still did
not solve all the issues. ROS itself requires lots of computational power and is better served on
computers with faster capabilities and much more processing power, especially those with multiple
cores to take advantage of the parallelism of ROS. We had attempted to use the NVIDIA Jetson
TX2, but sadly were not able to get it running with ROS2. The newer NVIDIA Jetson Nano could
be a viable option, once prices go down due to the ongoing chip shortage. It has been proven to
work with ROS2 by various people and as such could be a valuable addition to the project. Take
a look at reference [2] for more information.

One of the goals of the team was to implement a camera in order to incorporate image processing
capabilities. However, this was not able to be implemented due to time, power, and processing
constraints we found through the process of the project. If a new onboard computer with more
processing power is implemented, then the inclusion of a camera would be more than ideal for the
system. This would allow for obstacle identification to be reinforced, edge detection to work much
better, and would greatly contribute to traversal of the robot.

Another technical recommendation we have is to learn the ROS2 navigation systems very early
on and implement them quickly. Many simulation tutorials exist and should be performed on
team member’s personal laptops running Linux or a virtual machine to get insight on how ROS
works. However, software integration on hardware should be performed as early as possible to
allow time for debugging and configuring parameters. The navigation stack in particular requires
considerable modification to obtain proper transforms, sensor fusions, and other tweaks to obtain
good performance.

One final technical recommendation we have is to try moving to a more robust communication
system than the OSU network. As good as the internet is at OSU, it sadly does not allow for peer-
to-peer communication very easily. The only way to attempt to use peer-to-peer communication
with the system is to get all devices registered on the OSU secure, hidden robotics network. This
is a timely process and led to many issues when attempting to do web communications. As such,
we recommend moving the system to something outside of the scope of WiFi. This could include
cellular networks or other forms of peer-to-peer communications.

6.1.2 Global Impact Recommendations

One global impact recommendation we have is to incorporate more safety features for the robot. As
it stands, the primary sources of safety come in the form of the LiDAR unit for obstacle avoidance,
the bump sensors at the very front of the robot, and an emergency button for disconnecting
power. These are a good foundation, but more can be implemented to ensure proper safety of
the environment around the robot and the robot itself. Some options include other sensors (more
LiDAR, more bumpers, etc.) around the robot to have a full 360 degrees of detection, some sort
of manual sleep mode on the robot to allow an administrator user to temporarily stop the robot
if something were to occur, image processing to allow the robot to identify potential obstacles

84

sooner, or an alarm system which would warn people in the vicinity of the robot that they could
be in the way of the robot. Look into more about LiDAR with ROS at reference [3].

Another global impact recommendation is to try and use environmentally friendly materials
moving forward. A sort of baseline has been developed at the conclusion our part of the project,
and now it’s time for a new rendition / improvements. Some of the parts used – including the
plastics, electrical components, and other materials – could be substituted with for eco-friendly
materials very easily. As such, to reduce global and environmental impacts of this project even
more, we highly recommend sourcing eco-friendly materials if anything new is to be added to the
project, or replacing parts with environmentally-friendly materials.

6.1.3 Teamwork Recommendations

One very big recommendation is to integrate blocks early and often. While developing blocks,
many of the inputs and outputs of the blocks are simulated values which are set by the block
champion. While the design may have the proper outputs intended, things don’t always work that
way. When the time comes to integrate, oftentimes it is not as smooth as planned. As such, we
highly recommend that future teams integrate their blocks with one another as soon as possible.
This will help to build some communication amongst team members as you can discuss inputs and
outputs of each block and be able to effectively come to a solution. This will also save time when
system verification rolls around as you won’t have to spend as much time the third term debugging
and have less stress as the deadlines get closer.

Another big teamwork recommendation is to review each other’s work frequently. Whether
during the process of development or reviewing a final product, looking over another teammate’s
work can help to mitigate bugs which could occur in software or hardware. This will aid in team
cohesiveness and communication due to the constructive criticism from other members of the
team. Pairing up on certain parts of the project makes this an effective strategy. For instance, the
team this year had an electrical team, ROS team, and website team. Two members of the team
were on the each of the electrical and ROS teams, while only one was on the website team. As
such, many members had knowledge of the components of other members’ blocks and could aid
in debugging or reviewing of work. This was a very effective strategy when it came crunch time
to meet the deadlines and multiple members of the team were capable of understanding the parts
that other members were struggling with. As such, we highly recommend future teams implement
this strategy.

6.2 Project Artifact Summary

2020-2021 MPDR GitHub
2021-2022 APDR GitHub
Espressif Datasheet Documentation
ESP32 I2C Communication
SparkFun GPS NEO-M9N Tutorial
ESP32 Serial Communication with Raspberry Pi Tutorial
Automatic Addison ROS2 Navigation Stack Setup Tutorial
ROS2 Galactic Documentation
Navigation 2 Documentation

85

https://github.com/hannabanana96/MPDR_Masters/wiki
https://github.com/stagnert/APDR
https://www.espressif.com/en/support/documents/technical-documents
https://randomnerdtutorials.com/esp32-i2c-communication-arduino-ide/
https://learn.sparkfun.com/tutorials/sparkfun-gps-neo-m9n-hookup-guide/all
https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
https://automaticaddison.com/the-ultimate-guide-to-the-ros-2-navigation-stack/
https://docs.ros.org/en/galactic/index.html
https://navigation.ros.org/getting_started/index.html

6.3 Presentation Materials

2022 APDR Engineering Expo Poster

6.4 References

[1] Raspberry Pi, “Raspberry pi 4 model B specifications,” Raspberry Pi. [Online]. Available:
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/. [Accessed: 04-
May-2022].

[2] A. Piltch, “Nvidia Jetson Nano: The raspberry pi of ai?,” Tom’s Hardware, 19-Mar-2019. [On-
line]. Available: https://www.tomshardware.com/news/jetson-nano-features-price,38856.html. [Ac-
cessed: 06-May-2022].

[3] V. Mazzari, “Lidar integration with ROS: Quickstart Guide and Projects Ideas,” Génération
Robots - Blog, 06-Jul-2021. [Online]. Available: https://www.generationrobots.com/blog/en/lidar-
integration-with-ros-quickstart-guide-and-projects-ideas/. [Accessed: 06-May-2022].

86

https://drive.google.com/file/d/1tPJBmnkleAKnRtYsSILagt7XYywOWnOJ/view?usp=sharing

	Overview
	Executive Summary
	Team Protocols and Standard
	Communication Analysis

	Gap Analysis
	Timeline
	References
	Revision Table

	Project Scope
	Requirements
	Lock Box
	Emergency Stop
	Battery Monitoring
	Edge Detection
	Path Following
	Object Reaction
	Data transferred from system to website
	Data transferred from website to system

	Design Impact Statement
	Public Health, Safety, and Welfare
	Cultural and Social
	Environmental
	Economic

	Risks
	References
	Revision Table

	Top Level Architecture
	Block Diagram
	Block Descriptions
	Display Data
	Edge Detection
	Imaging Sensors*
	Lock Box
	MCU Driver
	Motor Controller
	Navigation Sensors
	Obstacle Identification
	Path Generation
	Power Management System
	ROS System*
	Web Controller

	Interface Definitions
	References and File Links
	References (IEEE)
	File Links

	Revision Table

	Block Validations
	Motor Controller
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Navigation Sensors
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Edge Detection
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Power Management System
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Web Controller
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Lock Box
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Path Generation
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Obstacle Identification
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Display Data
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	Micro-controller Driver
	Block Overview
	Block Design
	Block General Validation
	Block Interface Validation
	Block Testing Process
	References and File Links
	Revision Table

	System Verification Evidence
	Universal Requirements
	The system may not include a breadboard
	The final system must contain both of the following: a student designed PCB and a custom Android/PC/Cloud application
	If an enclosure is present, the contents must be ruggedly enclosed/mounted as evaluated by the course instructor
	If present, all wire connections to PCBs and going through an enclosure (entering or leaving) must use connectors
	All power supplies in the system must be at least 65% efficient
	The system may be no more than 50% built from purchased modules

	Lock Box
	Lock Box
	Testing Process
	Testing Evidence

	Emergency Stop
	Emergency Stop
	Test Process:
	Testing Evidence:

	Battery Monitoring
	Battery Monitoring
	Test Process:
	Testing Evidence:

	Edge Detection
	Edge Detection
	Test Process:
	Testing Evidence:

	Path Following
	Path Following
	Test Process:
	Testing Evidence:

	Object Reaction
	Object Reaction
	Test Process:
	Testing Evidence:

	Data transferred from website
	Data transferred from website to system
	Test Process:
	Testing Evidence:

	Data Transferred from System
	Data transferred from system to website
	Test Process:
	Testing Evidence:

	References and File Links
	References (IEEE)
	File Links

	Revision Table

	Project Closing
	Future Recommendations
	Technical Recommendations
	Global Impact Recommendations
	Teamwork Recommendations

	Project Artifact Summary
	Presentation Materials
	References

