

# **Psyche Lander Foot** Subsystem

Ahmed AlmansouriTeam 07E | MIME 611.2Jack DuncanJohn ParksJoseph Pittman



# **Phases**



### **Concept Generation**

What factors contributed to the design? What ideas came forth?



## Testing/Iterative

How did the design perform? What did we learn?



### **Final Design**

How do the feet attach to the surface? How will the feet prevent surface rebound?

# Concept Generation

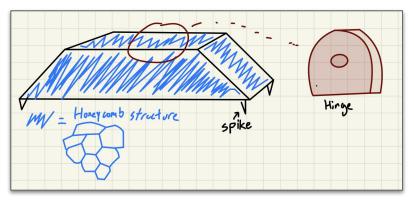
What Were the Driving Design Factors?

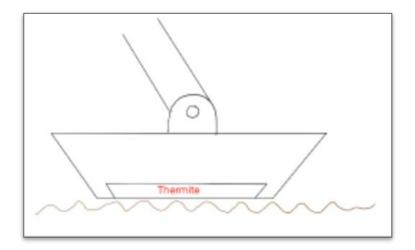
W/Sp 2023 07E - Landing System - OSU B

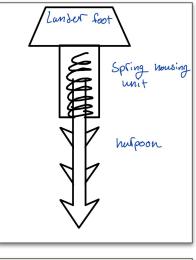
### Constraints: Project/Asteroid Asteroid:

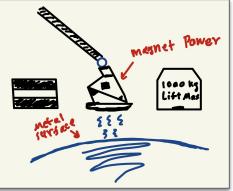
#### **Project:**

- \$500 Budget
- 20 Week Deadline
- No Given Lander Design
- Minimal Contextual Information
- Limited Access to Testing Locations
- Earth Properties


- Unknown Surface Compositions
- Unknown Surface Densities
  - Loose Regolith, Rock, Metal, or a Combination
- Acceleration due to Gravity = 0.144 m/s<sup>2</sup>
  - Surface Rebound
- Possible Existence of a Magnetic Field
- Extreme Geological Features


# **Design Requirements**

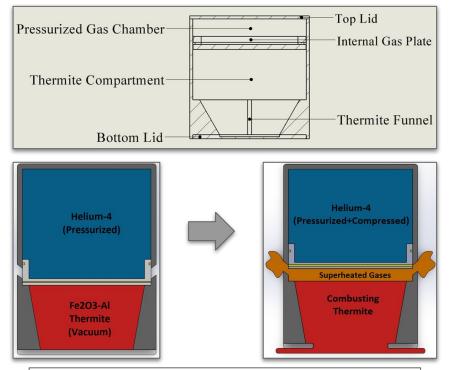

- Promote a Static Mass
  - Minimize/Eliminate Surface Rebound
- Ensure the Safety of the Scientific Instruments Located in the Lander bus
- Total Costs Equate to \$500 or Less


## Success!

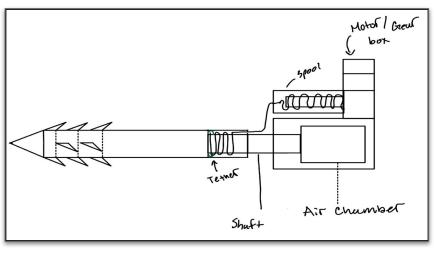
#### **Initial Concepts**







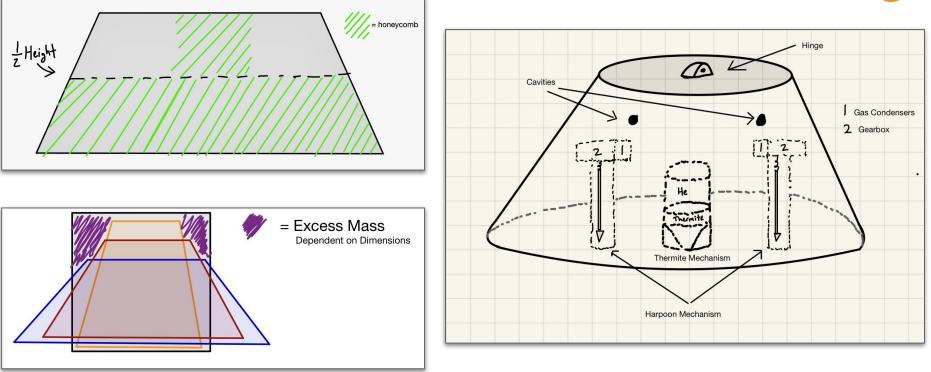



#### Initial Concepts Cont.

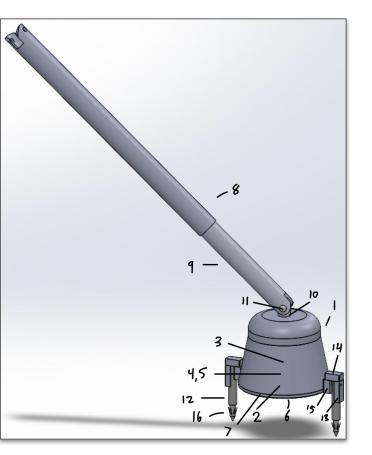





- Relies on gas produced by combusting thermite
- Internal Gas plate and vents to regulate combustion pressure (apply constant pressure)

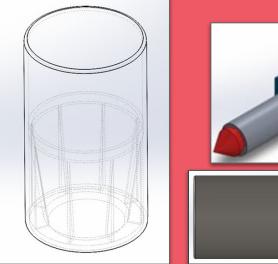


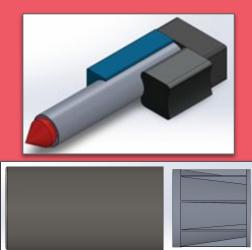
• Relies on air compressor


#### Initial Concepts Cont.






| ITEM NO. | PART NUMBER                       | DESCRIPTION                                                                                       | QTY. |
|----------|-----------------------------------|---------------------------------------------------------------------------------------------------|------|
| 1        | Foot Outer Housing                | Outer cover for the foot assembly.                                                                | 1    |
| 2        | Extruded Honeycomb                | Shock absorbing through plastic deformation.                                                      | 16   |
| 3        | Outer Housing                     | Housing for the thermite and helium chamber.                                                      | 1    |
| 4        | Internal Plate                    | Separating plate between thermite<br>chamber and pressurized helium<br>chamber.                   | 1    |
| 5        | O-Ring                            | Rubber o-ring to create a tight seal<br>between pressurized and non-<br>pressurized chambers.     | 2    |
| 6        | Low Melting Point<br>Bottom Plate | Polymer plate that melts upon<br>thermite ignition.                                               | 1    |
| 7        | Base of Foot                      | Contact point between foot and<br>Psyche surface. It also directs the<br>flow of molten thermite. | 1    |
| 8        | Primary Strut-Upper               | Upper half of the compressing strut section.                                                      | 1    |
| 9        | Primary Strut-Lower               | Lower half of the compressing strut section.                                                      | 1    |
| 10       | Strut Foot Mount                  | Mounting point for the foot to a strut                                                            | 1    |
| 11       | Lower Strut Pin                   | Mounts the strut to the foot.                                                                     | 1    |
| 12       | Harpoon Housing                   | Houses the harpoon and acts as a<br>barrel to direct it towards the<br>surface.                   | 2    |
| 13       | Air compressor<br>housing         | Houses the air compressor.                                                                        | 2    |
| 14       | Spool Housing                     | Houses the wire spool connected to the harpoon.                                                   | 2    |
| 15       | Gear Box Housing                  | Houses the motor that retracts the harpoon.                                                       | 2    |
| 16       | Harpoon                           | Used for puncturing the surface of<br>Psyche.                                                     | 2    |


#### Initial Concepts Cont.











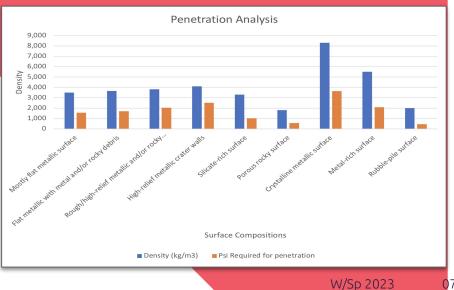
# **Chosen Concept**

- 2 Anchor Mechanisms:
  - Harpoon system
  - Thermite system
- No External Housing
- No Honeycomb Structure
  - Not Feasible
    - Requires Relatively Flat Surface (+/- 10°)
    - Problems with Extreme Terrain

# Testing/Iterative

How Did the Design Perform?

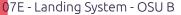
W/Sp 2023 07E - Landing System - OSU B


## Harpoon: Testing & Proof of Concept

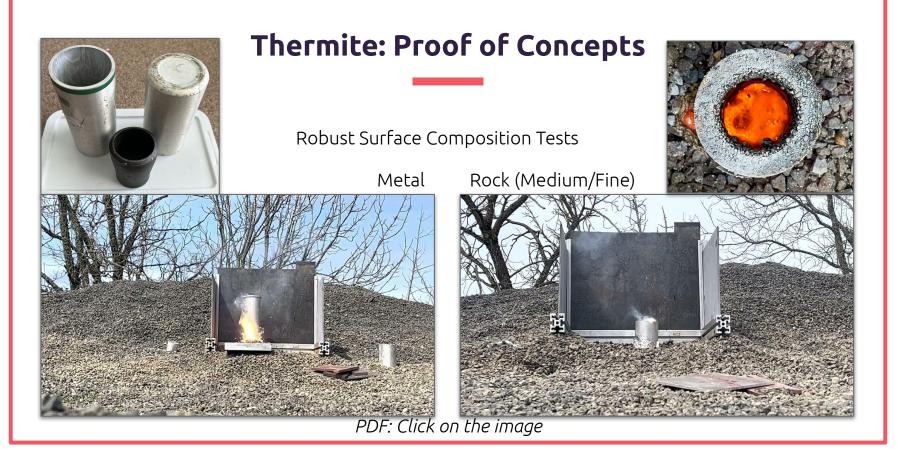




Successful penetration into soft surface. Unsuccessful penetration into denser surface. *PDF: Click on the image* 


| Surface Type 🔹                        | Density (kg/m3) 🔽 | Psi Required for penetration 💌 |
|---------------------------------------|-------------------|--------------------------------|
| Mostly flat metallic surface          | 3,400-4,100       | 1,290-1,560                    |
| Flat metallic with metal and/or rocky |                   |                                |
| debris                                | 3,400-4,100       | 1,400-1,700                    |
| Rough/high-relief metallic and/or     |                   |                                |
| rocky terrain                         | 3,400-4,100       | 1,680-2,040                    |
| High-relief metallic crater walls     | 3,400-4,100       | 2,070-2,520                    |
| Silicate-rich surface                 | 2,200-3,300       | 840-1,020                      |
| Porous rocky surface                  | 1,200-1,800       | 460-560                        |
| Crystalline metallic surface          | 7,800-8,300       | 2,990-3,630                    |
| Metal-rich surface                    | 4,500-5,500       | 1,720-2,090                    |
| Rubble-pile surface                   | 1,000-2,000       | 380-460                        |




# Harpoon Analysis

#### New Design Implementations

- Pneumatic Actuator
- Pressurized air chamber
- Control valve
- Increase pressure to 4000 psi to ensure proper surface penetration at optimal depth
- Lighter cables reduce drag and resistance from spool







## **Thermite: Iterative Testing**





Closed Top

Open Top

#### Tested both options to analyze penetration depths. PDF: Click on the image

## Thermite: Iterative Testing Cont.



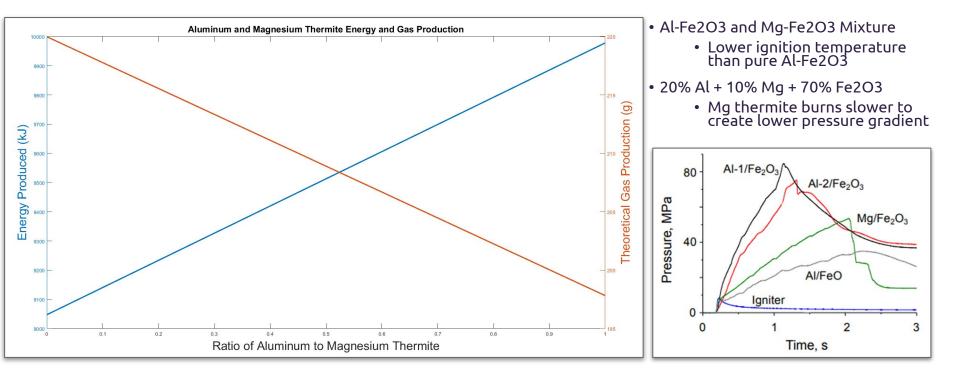


# **Thermite Analysis**

- Baseline Penetration Tests
- "Pressurized" Penetration Tests
- Attempt to Eliminate Gravity as a Variable
- The internal gas plate is unnecessary and adds additional points of failure
- Reactant mass percentages adjusted from 23%
  Al + 77% Fe2O3 to 30% Al + 70% Fe2O3
- A rocky terrain would be used for future testing as it is more realistic








# Thermite Analysis Cont.

- The gas production of thermite to expel the molten liquid increases horizontal spread
- The aluminum outer housing fused well with the molten thermite products
- Addition of magnesium to the composition creates additional gas, lowers the ignition temperature, and a violent reaction



# Thermite Composition



# Final Design

How Will the Feet Prevent Surface Bounce?

W/Sp 2023 07E - Landing System - OSU B

## Final Design & Hypothetical Attachment Point

Possible Attachment Strategy:

- Ball Joint Hinges w/ Supporting Struts
- TIG Welded to the Top Surface
- Allows for "Gimballed" Movement

The project scope did not include the legs, solely the foot subsystem.

Come see the physical model in-person at the 2023 Oregon State University Engineering Expo!



# Design Assumptions:

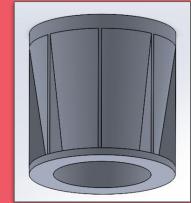
- The landing site may be inclined; the landing site is not necessarily flat.
- The lander may touchdown in a position that is not oriented perpendicular to the asteroid's surface (+/- 20°).
- The lander will touchdown using passive soft-impact techniques.
- The lander will not return to Earth.
- The lander fuselage will act as a rigid body through all life phases.
- The ignition power sources, control system, and relay will be placed within the lander bus.
  - Ignition source & control system connections will run through the legs of the lander.

# **Anchor Mechanisms**

### Harpoons

Four Main Components:

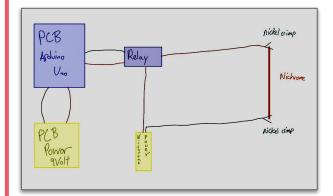
- ½" Radius Titanium Alloy Harpoon
- 80 rpm Turbine Motor
- 4000 psi Minimum Compressed Air Cylinder
- 25' of ¼" Galvanized Aluminum Tethering


## Thermite Cylinder

- 20% Al + 10% Mg + 70% Fe2O3 Composition
- Titanium Alloy Outer Housing
- 1060 Aluminum Nozzle
- Pressure Differential (Vacuum) Expels Thermite
  - Liquid Roots
  - Surface Weld

# Thermite Cylinder

- Addition of Fins to the Nozzle
  - Seats Nozzle into Outer Housing
  - Provides Structural Support to Prevent Deformation
  - Allows for thinner walls
- Elimination of Internal Gas Plate
  - Reduce Points of Failure
  - Redundant Feature








# **Thermite Ignition**

- 2 systems
  - Control (PCB)
  - Nichrome
- 30 Amp Relay
  - Closes/Opens Nichrome Circuit
- Lithium-Polymer Battery
  - Higher Discharge Rates
- Copper (Cu) Wire
- Nickel Springs
  - Crimp Replacement (Cost Reasons)
  - No Tinning
- Nichrome Wire (28 Gauge) | Can Heat Up To 1150°C
- ELEGOO Uno R3 (PCB Board)
  - Actuates Relay











# **Thermite Ignition**

- 1. PCB Actuates Relay
- 2. Relay Closes Nichrome Circuit
- 3. LiPo Battery Outputs current
- 4. Nichrome Heats to Mg Auto-Ignition temperature
- 5. Nichrome Ignites Mg
- 6. Mg Ignites the Remaining Thermite Composition

#### Consumables:

Nichrome Wire, Ni Springs, and ~ 1 foot of the Cu Wire







# Anchoring Comparisons: Hypothetical Surface Compositions

#### Case I Loose Regolith

#### Anchor Points

Min: 6 | Max: 9

Harpoon penetrates the deepest; Thermite spreads horizontally to promote stability; Thermite penetrates deeper than Case III

#### Case II **Rock**

#### 9

Harpoon penetrates deeper than Case IV; Thermite penetrates the deepest vertically (dependent on the porosity of the surface)

#### Case III Metallic

Min: 3 | Max: 9

Harpoon and Thermite penetrate the least; Thermite fuses/welds with surface

Case IV (Metallic/Rock):

): Harpoon penetrates deeper than Case III; Thermite penetrates deeper than Case III (dependent on the porosity of the surface); Thermite fuses/welds with metal compositions

#### **Future Iterations**

#### Thermite:

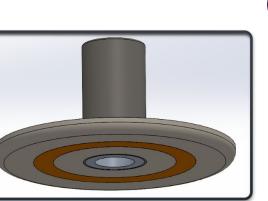
- Addition of a Preheating Charge
- Silica Based Reflective Coating

   Limits Undesirable Heat Loss
  - Objective Specific Design Medificati
- Objective Specific Design Modification
- Viscosity Related Composition Optimization

#### Harpoon:

- Rifling of the Harpoon Cylinder & Addition of Pitched Barbs
  - Deeper Penetration due to an Increase in Rotational Energy
  - Greater In-Flight Stability due to Angular Momentum


#### **Overall Structure:**


- Filleted Edges of Cylinders
  - Reduces Unnecessary Shearing
- Honeycomb Addition
  - Implement in High Stress Areas to Reduce Unnecessary Cracking/Buckling

# Preheating "Charge"

- Prevent or limit instantaneous solidification upon contact with surface
- Ring shaped preheating "charge" concentrated into the ground and towards center
- Thermite should be used rather than electric heating element to conserve power









#### Project Video: MIME 611.2 (OSU)

*Powerpoint: Watch on YouTube for 4K quality PDF: Click on the image* 





# **"FIX YOUR LITTLE PROBLEM AND LIGHT THIS CANDLE."**

Alan Shepard

W/Sp 2023 07E - Landing System - OSU B







# Oregon State University College of Engineering





Jet Propulsion Laboratory California Institute of Technology



**Acknowledgements:** Parker Choc, Tyler McHuron-Guss, Kelton Orth, Sheriff Jerry Williams, and the Refuge.

# **Mission & Project Queries**

Psyche Mission: <a href="https://psyche.asu.edu/">https://psyche.asu.edu/</a>

Project: <a href="https://events.engineering.oregonstate.edu/expo2023/project/nasa-psyche-landing-system">https://events.engineering.oregonstate.edu/expo2023/project/nasa-psyche-landing-system</a>

Team Lead: John Parks Harpoon Leads: Joseph Pittman | Ahmed Almansouri Thermite Leads: Jack Duncan | John Parks Ignition Lead: John Parks

\* Contact information is available on the next slide. \*



# Meet the Team: 07E | MIME 611.2



Ahmed Almansouri Senior B.S. Manufacturing Engineering, Minor in Industrial Engineering almanahm@oregonstate.edu



Jack Duncan Senior B.S. Mechanical and Manufacturing Engineering duncajac@oregonstate.edu



John Parks Senior B.S. Mechanical Engineering, Minor in Aerospace Engineering parksio@oregonstate.edu



Joseph Pittman Senior B.S. Mechanical Engineering pittmios@oregonstate.edu

# Disclaimer

This work was created in partial fulfillment of Oregon State University's Capstone Course MIME 497/498. The work is a result of the Psyche Student Collaborations component of NASA's Psyche Mission (<u>https://psyche.asu.edu</u>). "Psyche: A Journey to a Metal World" [Contract number NNM16AA09C] is part of the NASA Discovery Program mission to solar system targets. Trade names and trademarks of ASU and NASA are used in this work for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by Arizona State University or National Aeronautics and Space Administration. The content is solely the responsibility of the authors and does not necessarily represent the official views of ASU or NASA.



