
ECE44X Senior Design Team 26

Hobby Hub

Project Documentation

5/14/2022

Jia Wei Cheng chengjia@oregonstate.edu
Matthew Gragg graggm@oregonstate.edu
Rene Aimba aimbar@oregonstate.edu

Kristina Mason masonkr@oregonstate.edu

mailto:chengjia@oregonstate.edu
mailto:graggm@oregonstate.edu
mailto:aimbar@oregonstate.edu
mailto:masonkr@oregonstate.edu

1. Overview

1.1 Executive Summary

The goal of this project is to design a “smart home”, that entails a smart hub and a smart plug
and can control IOT (Internet of Things) devices. These devices can be togglable plugs for
lamps, appliances, etc. controllable lights, or other devices used to control or manage other
home devices. Initially, the project currently entails a wall plug/socket that can be controlled
remotely through WIFI via Smart hub that uses a Raspberry Pi Microcontroller.

1.2 Team Contacts and Summary

Team Member Email Primary Project Role

Jia Wei Cheng chengjia@oregonstate.edu Smart Plug Software

Matthew Gragg graggm@oregonstate.edu Smart Hub Software

Renee Aimba aimbar@oregonstate.edu Smart Hub Hardware

Kristina Mason masonkr@oregonstate.edu Smart Plug Hardware

Table 1:Team Member Information

Don’t work more than 2 hours at a time without 20-30 minute breaks.

Meet-up weekly (in-person or virtually) to relay any gained progress/knowledge
regarding the project.

Everyone should have 1-2 pieces of feedback on any drafted technical document (if
possible).

Hold meetings whenever there’s technical decisions/designs that need to be
finalized.

Table 2:Team Protocol

1.3 Gap Analysis
This smart-home hub allows for both hobbyists and professionals alike to create an
interconnected web of devices in order to make one’s life more convenient. The product allows
one to customize their home connections to fit with their specific needs. It will also be open
source, as fits our assumption that the user may want to add their own custom built devices to
their network.

The smart-home hub can control the lights from anywhere via a web-device which can be
beneficial in terms of energy efficiency and/or automation. Users should be able to control the
devices easily from an application, and after verification, the system provides the user a web
application that 9 out of 10 users say is easy to use. The end user will be anyone who is into
employing an energy efficient system, to wirelessly control certain devices.

1.4 Timeline

Terms Fall Term

WBS
NUMBER

Week 1 2 3 4 5 6 7 8 9 10

TASK TITLE

1 Project Conception and Initiation

1.1 Project Research

1.2 Project Design

1.3 Prototype Ideas

1.3.1 Prototype Design

1.3.2 Prototype Build

1.4 Design Revision

Figure 1: Timeline Gantt Chart

1.5 Reference and File Links

[1] Taifur and Instructables, “Smart plug,” Instructables, 12-Oct-2017. [Online]. Available:
https://www.instructables.com/Smart-Plug/. [Accessed: 14-Oct-2022].

1.6 Revision Table

Revision Description

3/8/2023 Kristina: Added new sections/content based
off of Project Document Content Guide and
recent accomplishments

3/8/2023 Renee: made changes to the previous
content we had included in the document at
the beginning of fall term

1 Initial Write-up

2 Changed timeline from a picture to a google
sheet gantt chart.

2. Impact and Risk

2.1 Design Impact Statement
1. Introduction

The point of this document is to assess and analyze potential risks and impacts of Smart
Home System designed by Project Group #26. This document will analyze risk and
potential harms/risk for public health, possible cultural and societal implications,
environmental impacts, and economic factors and costs. This document will contain
reference and example to justify the analysis presented. Possible solutions and risk
mitigation techniques will also be proposed.

2. Public Health, Safety, and Welfare Impacts
The obvious safety factor when considering a home automation system such as this is
system and software security. With possible personal devices being controlled via the
internet, this creates opportunities for exploitation of system oversights and
vulnerabilities, which can lead to a user’s personal data being visible to hackers.
Although these risks are small, these are risks that still exist and should be taken into
account.

3. Cultural and Social Impacts
There could also be potential societal impacts with owning a smart home system. In
general, such a system would provide one with better convenience and further

accessibility with controlling home appliances. Hence, giving families, who are capable
of owning such a system, more capability within their homes.

4. Environmental Impacts
A home automation system could potentially be eco-friendly if configured a certain way;
such as timer based solutions which turn off appliances based on time passed. However,
there could be environmental impacts if the solution is not fully well rounded. In general,
the hub of a smart home system has to always be continuously running as each
manages the statuses of all the other home appliances; hence, in a flawed solution, the
hub could be potentially wasting electricity.

5. Economic Factors
When it comes to the economic impacts of smart home devices some points can be
derived immediately. One, smart home devices have the potential to save energy costs,
especially for homeowners, smart home devices establish a new consumer market, and
three smart home and more specially internet of things devices have much greater
impact in places where readily available internet access is normal. These claims are
mostly referring to smart home systems such as Google Nest, Hub, etc. that are mass
market solutions with a large product ecosystem, as tangible economic and cost benefits
for automation services scale with home many facets of the home can be automated.
From our product angle, we are shooting for a DIY/prototyping angle. We want to deliver
an ecosystem of products that other engineers and tinkers can use to test out their
ideas. This means that evaluating these economic impacts get more difficult as the
general use case for our project is very general.

Energy Usage
A core idea of our project is a smart plug, that can turn on and off home appliances,
lights, etc from an app, and track energy consumption. In the ScienceDirect paper,
“Environmental Impacts and Benefits of Smart Home Automation,” Nicloas, ANtonio,
Kuako, and Eva complete a full carbon footprint and energy consumption evaluation on
Finnish households who have installed internet-controlled energy systems. They found
that those systems alone proved a 12% decrease in energy consumption annually [x].
Even more energy saving could be achieved, they highlight, as these energy
management systems could also be applied to the aging grids that the homes were
running off of, meaning integration at the city level could further reduce energy cost and
consumption. Logically these benefits could not be fully extended to just internet
controlled wall plugs. The plugs alone then could contribute to a consumer trend towards
being mindful about energy usage.

Costs to Maintain an Initial Costs:
According to a home advisor, the average cost of a full home automation system is
around 820-1440$[3]. This varies wildly based on how many automated devices are
used. Our requirements put us at a much lower price point at around 300$. As for

maintenance costs, this is also hard to judge. Most home automation systems need little
maintenance, and this project scope is not intended to be a large scale product designed
for mass consumption. The average user of a linked arduino system is not going to be
someone looking for this product in an attempt to save money.

6. Conclusions
In conclusion, the impacts of our design can be summarized mostly in the relation to the
homeowner, as mass production is not planned. The security of the software is
determined as the most important risk that must be minded.

2.2 Risks

Risk ID Risk
Description

Risk
Category

Risk
Probability

Risk
Impact

Performance
Indicator

Action
Plan

R1 Parts
Delay

Timeline M M Parts get
delayed.

Order
early

R2 Design
Flaw

Technical M H Design
requirement
s are still not
met after
design
discussion.

Perform
early
prototypes
and
revisions

R2 Software
usability is
not
sufficient.

Technical M H User
surveys do
not indicate
ease of use.

User
guided
design
decisions.

Table 3: Risks and their descriptions

2.3 References and File Links
[1] “How to stop your smart plug from giving hackers access to devices on your Wi-Fi

Network,” HT Tech, 23-May-2021. [Online]. Available:

https://tech.hindustantimes.com/home-appliances/news/how-to-stop-your-smart-plug-from-givin

g-hackers-access-to-devices-on-your-wi-fi-network-71621775987120.html. [Accessed:

04-Nov-2022].

[2] R. J. Pierce, “Smart plug users? be careful if you have a cheap one, because it's

vulnerable to hacking,” Tech Times, 23-May-2021. [Online]. Available:

https://www.techtimes.com/articles/260574/20210523/cheap-smart-plug-vulnerable-hacking.htm

. [Accessed: 04-Nov-2022].

[3] J. Chung, “The role of culture in adopting Smart Home Technologies,” SpringerLink,

01-Jan-1970. [Online]. Available:

https://link.springer.com/referenceworkentry/10.1007/978-3-319-01583-5_58. [Accessed:

04-Nov-2022].

[4] D. D. F. D. Rio, B. K. Sovacool, and S. Griffiths, “Culture, energy and climate

sustainability, and Smart Home Technologies: A mixed methods comparison of four countries,”

Energy and Climate Change, 23-Apr-2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S266627872100012X. [Accessed:

04-Nov-2022].

[5] J.-N. Louis, A. Calo, K. Leiviskä, and E. Pongrácz, “Environmental impacts and

benefits of Smart Home Automation: Life Cycle Assessment of Home Energy Management

System,” IFAC-PapersOnLine, 17-Jun-2015. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2405896315001597. [Accessed:

04-Nov-2022].

[6] D. Yang Meier, P. Barthelmess, W. Sun, and F. Liberatore, “Wearable Technology

Acceptance in health care based on national culture differences: Cross-country analysis

between Chinese and Swiss consumers,” Journal of medical Internet research, 22-Oct-2020.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644382/. [Accessed:

04-Nov-2022].

[7] M. Ghazal, M. Akmal, S. Iyanna, and K. Ghoudi, “Smart plugs: Perceived usefulness

and satisfaction: Evidence from United Arab Emirates,” Renewable and Sustainable Energy

Reviews, 28-Aug-2015. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1364032115007431. [Accessed:

04-Nov-2022].

[8] Mariya-Greeley, “Living like the jetsons: The benefits (and risks) of Smart

HomeTechnology,” Sponsored, 07-Nov-2018. [Online]. Available:

https://sponsored.bostonglobe.com/future-forward/smart-home-technology/. [Accessed:

04-Nov-2022].

[9] Stanislav, Mark and Beardsley, Tod, “Hacking iot: A case study on baby monitor

exposures and vulnerabilities,” Rapid7 Report, 2015. [Online]. Available:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/63/2015/11/21031739/Hackin

g-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf. [Accessed:

18-Nov-2022].

2.4 Revision Table

Revision Description

1 Initial Write-up of Impact statement and risks.

2 Added to Public Health, Safety, and Welfare
Impacts

3 Edited formatting

3. Top-Level Architecture

3.1 Block Diagram

Figure 2: System Block Diagram

Figure 3: Black Box Diagram

3.2 Block Descriptions

Name Description

Smart Hub
Software
Champion:
Matthew
Gragg

The Smart hub will be a HTTPS socket layer/server, also using MQTT to
schedule updates to ESP32's running MQTT scheduling software.

Control App
Front End
Champion:
Matthew
Gragg

This block is the front-end/design of our companion web application. This
application will be used to send commands to the main hub, and will
communicate directly to the backend of our web application. From there,
commands will be sent to the hub. This application will allow the user to the
smart plug/switch, allowing for remote switching of outlet power. This
application will also allow the user to send generic commands to other
connected devices. This application will also show the status of current
connected devices on the hub network. As stated earlier, all direct connections
and communication will be done with the web applications backend, which will
handle sending the proper commands and organization of incoming status
messages from connected devices on the network.

Control App
Back End
Champion:
Jia Wei
Cheng

A HTTPs socket-based backend for the User control Application. This will send
the status of user input and commands to the hub, along with the desired
device. The hub will also send status of connected devices to this block.

Smart Plug
Software
Champion:
Jia Wei
Cheng

Microcontroller code that receives signals from the Hub via wifi and acts
accordingly to turn on/off the connected appliances.

Smart Plug
Hardware
Champion:
Kristina
Mason

The hardware and circuitry required to create a smart plug in which it will act as
a wirelessly activated relay activating an incandescent or LED light bulb usually
placed into lamps. Inside of the Smart Plug will be an ESP32 microcontroller
along with a transformer that will turn the voltage output from the
microcontroller into a voltage high enough to power lightbulbs and other AC
powered devices.

Smart Hub
Hardware
Champion:
Renee
Aimba

This is a smart home hub implemented to power a Raspberry Pi module which
will be used as a microcontroller. The system will receive AC power via a wall
outlet, which will be passed through a regulator circuit to change it to DC
power, and a filter and converter system to step it down.

Enclosure
Smart Plug
Champion:
Kristina
Mason

An enclosure for the smart plug, where the circuit and microcontroller for the
Smart Plug are in it. This enclosure will be able to withstand the shock of being
dropped from chest height. The enclosure will also not conduct electricity to the
outer world, ensuring the safety of those who will use this device.

Enclosure
Smart Hub
Champion:
Renee
Aimba

An enclosure for the smart hub that holds all the components used in the hub
circuit. The enclosure is fitted with holes for heat dissipation, for when the
components heat up as they are being used.

Table 3: Project Block Descriptions

3.3 Interface Definitions

Name Properties

otsd_cntrl_pp_frnt_nd_usrin ● Other: Touch screen buttons.
● Timing: User interacts with interface using

HID or touch (force update), otherwise 1hz
status update when buttons are not
pressed..

● Type: Touch inputs, keyboard inputs
(alphanumerical)

otsd_smrt_plg_hrdwr_dcpwr ● Inominal: .5ADC
● Ipeak: 1ADC
● Vmax: 12VDC
● Vmin: 5VDC

otsd_smrt_plg_hrdwr_acpwr ● Inominal: 5A
● Ipeak: 10A
● Vnominal: 120VAC

otsd_smrt_hb_hrdwr_acpwr ● Inominal: 0.0296 A
● Vmax: 124.7 VAC
● Vnominal: 120 VAC

otsd_enclsr_smrt_hb_other ● Other: Input connector 1:120 VAC
connector

● Other: Input connector 2: Power switch
● Other: Output connector: female jumper

wires and wired connection

otsd_enclsr_smrt_hb_envin ● Other: Height: 3 inches
● Other: Width: 4.5 inches
● Other: Length: 6 inches

smrt_hb_sftwr_cntrl_pp_bck_nd_data ● Data Rate: 1Hz update rate
● Messages: MQTT subscriber messages

(device ID, and command)
● Protocol: MQTT

smrt_hb_sftwr_smrt_plg_sftwr_data ● Data Rate: 1 Hz Update Rate
● Messages: MQTT published commands

(Device Commands and device name
(strings).)

● Protocol: MQTT

cntrl_pp_frnt_nd_cntrl_pp_bck_nd_dat
a

● Data Rate: 1Hz Update rate to backend.
● Messages: Status of button presses and

user input messages. Such as turning on
the smart plug, changing the name of plug,
etc.

● Protocol: HTTP POST

cntrl_pp_bck_nd_smrt_hb_sftwr_data ● Data Rate: 1Hz Update rat.
● Messages: Command to Turn on and off

plug.
● Protocol: MQTT

cntrl_pp_bck_nd_cntrl_pp_frnt_nd_dat
a

● Data Rate: 1Hz update rate.
● Messages: Status of devices from hub.

Connected devices at hub.
● Protocol: HTTP GET

smrt_plg_sftwr_smrt_hb_sftwr_data ● Data Rate: 1 Hz Update Rate
● Messages: Connected status, current

command in queue, fault codes
● Protocol: MQTT

smrt_plg_hrdwr_otsd_acpwr ● Inominal: 0.08 Amps AC (With Nominal
power being 10W at 120VAC)

● Ipeak: 0.17 Amps AC (Max power being
20W at 120VAC)

● Vnominal: 120VAC to power lamps that run
on AC power

smrt_hb_hrdwr_otsd_dcpwr ● Inominal: 0.03 V
● Ipeak: 0.06 A
● Vmax: 18.8 V
● Vmin: 17.0 V

enclsr_smrt_hb_otsd_other ● Other: Output connector: female jumper
wires and wired connection

● Other: Input connector 1: 120VAC
connector

● Other: Input connector 2: Power switch

Table 4: Project Interface definitions

3.4 References and File Links

3.5 Revision Table

Revision Description

1 Initial Revision

4. Block Validation

4.1 Smart Hub Enclosure

4.1.1 Description
This is an enclosure for the smart hub system. It has plenty of ventilation for the transformer,
which should only get warm and not hot. It also has holes for the Raspberry Pi ports and the
Power switch module too.

4.1.2 Design

Figure 4: Smart Hub Enclosure Block Diagram

The enclosure has a height, length and width of 3”, 6”, 4.5” respectively. It also has three
connectors going into and out of it. The first is the power cable that connects to the wallpower
and to the exterior of the enclosure. This is enabled by the second connector which is a power
switch which has a port and a switch. The final connector will be used to power the Raspberry
Pi.

4.1.3 General Validation
This block entails a surface of numerous holes that enables heat dissipation for the transformer.
It is also the right dimensions to encompass the whole system. It also has port connectors that
enable seamless powering of the system inside it.

4.1.4 Interface Validation
otsd_enclsr_smrt_hb_envin : Input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

Other: Length: 6 inches The total sum length of all the
components added up to
approximately 5.5 Inches. A
little room was given to
ensure distance between
components.

This interface was tested and
verified manually, and
demonstrated to the TA’s

Other: Height: 3 inches The height of the tallest
component was
approximately less than 3
inches.

This interface was tested and
verified manually, and
demonstrated to the TA’s.

.Other: Width: 4.5 inches The total sum length of all the
components added up to
approximately 5.5 Inches. A
little room was given to
ensure distance between
components.

This interface was tested and
verified manually, and
demonstrated to the TA’s.

Table 5: Smart Hub Interface definitions

otsd_enclsr_smrt_hb_other : Input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

Other: Output connector:
female jumper wires and
wired connection

This is the connector
between the buck converter
and the Raspberry Pi.

The buck converter, and raspberry
Pi module, have male header pins
thus connecting them via female
jumper wires is sufficient.

Other: Input connector
1:120 VAC connector

The C13 power cable has a
capability to handle wall
power. Our input voltage is
within the voltage range of its
compatibility.

According to page 2 of Power cable
datasheet , the voltage
Compatibility of this cable ranges
from 100-250V.

Other: Input connector 2:
Power switch

The C14 power switch is
used alongside the C13
power cable to connect to the
wall outlet.

This connector has a mount socket
to connect to the C13 cable.
According to page 1 of the C14
datasheet , the rated maximum
voltage that it can handle is
120-250VAC.

Table 6: Smart Hub Interface definitions

https://www.digikey.bg/htmldatasheets/production/1605133/0/0/1/P004-004-13A-Datasheet.pdf
https://www.digikey.bg/htmldatasheets/production/1605133/0/0/1/P004-004-13A-Datasheet.pdf
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P1488483833.pdf
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P1488483833.pdf

enclsr_smrt_hb_otsd_other : Output

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

Other: Output connector:
female jumper wires and
wired connection

This is the connector
between the buck converter
and the Raspberry Pi.

The buck converter, and raspberry
Pi module, have male header pins
thus connecting them via female
jumper wires is sufficient.

Other: Input connector
1:120 VAC connector

The C13 power cable has a
capability to handle wall
power. Our input voltage is
within the voltage range of its
compatibility.

According to page 2 of Power cable
datasheet , the voltage
Compatibility of this cable ranges
from 100-250V.

Other: Input connector 2:
Power switch

The C14 power switch is
used alongside the C13
power cable to connect to the
wall outlet.

This connector has a mount socket
to connect to the C13 cable.
According to page 1 of the C14
datasheet , the rated maximum
voltage that it can handle is
120-250VAC.

Table 7: Smart Hub Interface definitions

4.1.5 Verification Process
a. User testing:
- Using a measurement tool, measure the length.
- Using a measurement tool, measure the width.
- Using a measurement tool, measure the height.

b. Functional testing
- Connect the C13 power cable to the wall outlet
- Connect the other end of the C13 power cable to the C14 power switch (ensure the

switch is off).
- Connect the female jumper wires to the raspberry Pi and turn the switch on.

4.1.6 References and File Links
a. References(IEEE)

[1]Taifur, T., & Instructables. (2017, October 12). Smart plug. Instructables. Retrieved
January 19, 2023, from https://www.instructables.com/Smart-Plug/

a. Files

https://www.digikey.bg/htmldatasheets/production/1605133/0/0/1/P004-004-13A-Datasheet.pdf
https://www.digikey.bg/htmldatasheets/production/1605133/0/0/1/P004-004-13A-Datasheet.pdf
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P1488483833.pdf
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P1488483833.pdf
https://www.instructables.com/Smart-Plug/

[2] C13 power cable datasheet -
https://www.digikey.bg/htmldatasheets/production/1605133/0/0/1/P004-004-13A-Datasheet.pdf

[3] C14 Power switch datasheet -
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P1488483833.pd
f

4.1.7 Revision Table

03/11/2023 Renee: Created the section and populated it with information about Block
2

4.2 Smart Hub Hardware

4.1.1 Description
This is a smart home hub implemented to power a Raspberry Pi module which will be used as a
microcontroller. The system will receive AC power via a wall outlet, which will be passed through a
regulator circuit to change its DC power, and a filter and converter system to step it down.

4.1.2 Design
Within the black box diagram of my block is a transformer, a rectifier circuit and a buck
converter. The design entails power supply block, which is connected to the mains voltage and
receives an input power of 120VAC. The wall power is connected to the circuit through a C13
power cable and C14 power socket with a switch. The design will power a Raspberry pi module
for wireless communication.

I chose this over the ESP32 because it is a better option to load a server onto. The ESP32 is a
dual-core 160 Mhz to 240 MHZ CPU,whereas the Raspberry Pi has a 1.4GHz clock speed. It
was easy to install an Operating System on the Raspberry Pi as a beginner, and one can write a
python script to execute tasks if they are not comfortable with Linux. It also has good GPIO
functionality, and can handle tasks as well as a PC. The smart plug will include an ESP32
module which will communicate with the Raspberry Pi in the smart hub. The smart hub will
transmit a signal to the smart plug, which thereafter turns on a light. This is done by an
application which is available on one’s phone and via a website if you would like to use a
computer/laptop. This block is powered by otsd_smrt_hb_hrdwr_acpwr which is 120VAC mains
voltage, and its output will be smrt_hb_hrwdwr_otsd_dcpwr to power the raspberry pi as shown
by the black box representation below.

https://www.digikey.bg/htmldatasheets/production/1605133/0/0/1/P004-004-13A-Datasheet.pdf
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P1488483833.pdf
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P1488483833.pdf

Figure 5: Smart Hub Block Diagram

4.1.3 General Validation
This block entails a lot of parts which are readily available at the TekBots store. This course of
action was chosen because it is more cost effective for students, and easily accessible as
opposed to waiting and paying for shipping costs after ordering parts online.The system is
powered by 120VAC which is limited by a switch. When the switch is turned on that AC power is
converted to DC as it passes through the rectifier, and stepped down via the buck converter. A
voltage of %V is used to turn on the Raspberry Pi which turns on when connected to the
converter.

4.1.4 Interface Validation
Otsd_smrt_hb_hrdwr_acpwr :

Vmax: 124VAC This was measured with an
AC ammeter

● Vin can range from
114VAC to 126VAC.

Vnominal: 120VAC Wall power is 120VAC and
that is stepped down to 5V to
power the Raspberry Pi.

● To power the
Raspberry Pi a
nominal Voltage of 5V
is required.
Raspberry Pi
datasheet. Pg 2

Imax: 2.5A This is the maximum amount
of current required to power
Raspberry pi with USB
devices connected.

● There is an expected
peak output current of
2.5A @120VAC

https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf

Inominal: 1.3A This is the current draw for a
Raspberry Pi 3B+ provided it
does not have any accessories
connected to it.

● Predicting the actual
nominal current is
challenging, because
the Raspberry Pi has 4
USB ports and the
current draw varies
with each device
connected. 1.3A is
used to power the
Raspberry 3B and
1.2A to power the
USB accessories.

Table 8: Smart Hub Interface definitions
Otsd_smrt_hb_hrdwr_dcpwr :

Vmax: 5.25V This is the maximum amount
of power that the raspberry Pi
can handle.

● The TPS333D chip on
the buck converter
allows for a +/-
300mV ripple
according to the Tech
Demo specifications
followed while
building the buck
converter.

Vnominal: 5V Wall power is 120VAC and
that is stepped down to 5V to
power the Raspberry Pi.

● To power the
Raspberry Pi a
nominal Voltage of 5V
is required.
Raspberry Pi
datasheet. Pg 2

Vmin: 4.7V This is the minimum amount
of power that the Raspberry
Pi can handle with no
accessories connected to it.
However, the zero will run
and there will be a lot of
under voltage warnings.

● The TPS333D chip on
the buck converter
allows for a +/-
300mV ripple
according to the Tech
Demo specifications
followed while
building the buck
converter.

Imax: 2A This is the maximum amount
of current required to power
Raspberry pi with USB
devices connected.

● The chip that is used
for the buck converter
has a maximum Io of
2A, according to

https://docs.google.com/document/d/e/2PACX-1vS8fkv7bHJuXfVOtRtj6tduKUQLHPEc0SUFvkTTbL4H_wsRfhluQTMdPFNuPhCS87Phi_qkTzoA01ns/pub
https://docs.google.com/document/d/e/2PACX-1vS8fkv7bHJuXfVOtRtj6tduKUQLHPEc0SUFvkTTbL4H_wsRfhluQTMdPFNuPhCS87Phi_qkTzoA01ns/pub
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
https://docs.google.com/document/d/e/2PACX-1vS8fkv7bHJuXfVOtRtj6tduKUQLHPEc0SUFvkTTbL4H_wsRfhluQTMdPFNuPhCS87Phi_qkTzoA01ns/pub
https://docs.google.com/document/d/e/2PACX-1vS8fkv7bHJuXfVOtRtj6tduKUQLHPEc0SUFvkTTbL4H_wsRfhluQTMdPFNuPhCS87Phi_qkTzoA01ns/pub

TPS54233 Datasheet
pg 12. This in turn
influences the
maximum DC current.

Inominal: 1.5A This is the nominal current
required to power on the
Raspberry Pi.

● The buck converter
allows for a 1.5
Inominal current
according to the Tech
Demo specifications
followed while
building the buck
converter.

Imin: 1.3A This is the current draw for a
Raspberry Pi 3B+ provided it
does not have any accessories
connected to it.

● Predicting the actual
nominal current is
challenging, because
the Raspberry Pi has 4
USB ports and the
current draw varies
with each device
connected. 1.3A is
used to power the
Raspberry 3B and
1.2A to power the
USB accessories.

Table 8: Smart Hub Interface definitions

4.1.5 Verification Process
a. User testing

This test will verify whether the user interface is compatible with the system.

1. Connect the system to mains voltage.
2. Switch on the power switch. The light will turn red on the switch if it is on
3. Connect the raspberry pi via a HDMI cord to a computer to see if it is powered on.

4.1.6 References and File Links
b. References(IEEE)

[1]Hugo, eM., Diego, & Pablo. (2022, February 7). Adding battery charger to ESP8266
and ESP32 (well done). eMariete. Retrieved January 19, 2023, from
https://emariete.com/en/co2-meter-with-battery-well-done/

https://www.ti.com/lit/ds/symlink/tps54233.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1678644409099&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps54233
https://docs.google.com/document/d/e/2PACX-1vS8fkv7bHJuXfVOtRtj6tduKUQLHPEc0SUFvkTTbL4H_wsRfhluQTMdPFNuPhCS87Phi_qkTzoA01ns/pub
https://docs.google.com/document/d/e/2PACX-1vS8fkv7bHJuXfVOtRtj6tduKUQLHPEc0SUFvkTTbL4H_wsRfhluQTMdPFNuPhCS87Phi_qkTzoA01ns/pub
https://emariete.com/en/co2-meter-with-battery-well-done/

[2]Taifur, T., & Instructables. (2017, October 12). Smart plug. Instructables. Retrieved
January 19, 2023, from https://www.instructables.com/Smart-Plug/

[3]Zthipps. (2017, May 14). DIY smart switch - part 1 how to use a Relay. YouTube.
Retrieved January 20, 2023, from https://www.youtube.com/watch?v=5NxVmg8ZFEc

c. Files

[4]Raspberry Pi 3B+ datasheet -
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf

[5]Wall plug schematic-
https://drive.google.com/file/d/1YKgXc-X47uoHegjJA8BEpZfZEayqXGba/view?usp=sh
are_link

[6]Hardware High Level design -
https://drive.google.com/file/d/1ZUUw2BXm3I8gXhwGgrsCy52DM2sdnKof/view?usp=
share_link

[7]Software High Level Design -
https://drive.google.com/file/d/1ZUUw2BXm3I8gXhwGgrsCy52DM2sdnKof/view?usp=
share_link

[8] TPS54233 Datasheet -
https://www.ti.com/lit/ds/symlink/tps54233.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-nu
ll-wwe&ts=1678644409099&ref_url=https%253A%252F%252Fwww.ti.com%252Fgene
ral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhtt
ps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps54233

[9] Tech Demo Specifications -
https://docs.google.com/document/d/e/2PACX-1vSTGN-MsnjkEHcNywmy30H1PFOFK
Hb0VqDk4epHT8vFfdkYmJU_G73ZmjhTbj4UtabMG7anF15-OSYx/pub

4.1.7 Revision Table

03/11/2023 Renee: Populated the section on the Smart hub hardware with content
from block validation documents and made edits.

02/10/2023 Renee: Revised block validation document to included suggestions from
Don, Rachel and Peer reviews

01/18/2023 Renee: Created and populated the block validation document

https://www.instructables.com/Smart-Plug/
https://www.youtube.com/watch?v=5NxVmg8ZFEc
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
https://drive.google.com/file/d/1YKgXc-X47uoHegjJA8BEpZfZEayqXGba/view?usp=share_link
https://drive.google.com/file/d/1YKgXc-X47uoHegjJA8BEpZfZEayqXGba/view?usp=share_link
https://drive.google.com/file/d/1ZUUw2BXm3I8gXhwGgrsCy52DM2sdnKof/view?usp=share_link
https://drive.google.com/file/d/1ZUUw2BXm3I8gXhwGgrsCy52DM2sdnKof/view?usp=share_link
https://drive.google.com/file/d/1ZUUw2BXm3I8gXhwGgrsCy52DM2sdnKof/view?usp=share_link
https://drive.google.com/file/d/1ZUUw2BXm3I8gXhwGgrsCy52DM2sdnKof/view?usp=share_link
https://www.ti.com/lit/ds/symlink/tps54233.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1678644409099&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps54233
https://www.ti.com/lit/ds/symlink/tps54233.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1678644409099&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps54233
https://www.ti.com/lit/ds/symlink/tps54233.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1678644409099&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps54233
https://www.ti.com/lit/ds/symlink/tps54233.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1678644409099&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Ftps54233
https://docs.google.com/document/d/e/2PACX-1vSTGN-MsnjkEHcNywmy30H1PFOFKHb0VqDk4epHT8vFfdkYmJU_G73ZmjhTbj4UtabMG7anF15-OSYx/pub
https://docs.google.com/document/d/e/2PACX-1vSTGN-MsnjkEHcNywmy30H1PFOFKHb0VqDk4epHT8vFfdkYmJU_G73ZmjhTbj4UtabMG7anF15-OSYx/pub

4.3 Back End Control App

4.3.1 Description
The Code block serves as a backend web application for the user control application. The
program is an API written in Python with the Flask library; the program accepts HTTP GET and
POST requests and MQTT Publish and Subscribe requests from client applications [1]. The user
control frontend application will communicate with the program through HTTP requests, and the
smart hub devices will be able to communicate with the program through MQTT requests.

4.3.2 Design
The Internet of Things smart home project provides user mobile control over home electronic
appliances when attached to the project's smart plug and connected to the project’s smart hub.
To accomplish the home appliance control and management system, the code will retrieve
HTTP requests from the frontend application client and perform any MQTT requests as
necessary to the smart hub.

The HTTP requests are used for communication between the frontend application client
and the backend server application. A HTTP GET request from the client will trigger the
backend API to send the current statuses of all the connected devices (smart plugs). A HTTP
POST request allows the frontend application client to perform commands onto a specified
smart plug if possible.

The MQTT requests are used for communication between the backend server
application and the smart hub. A MQTT Subscribe request allows the backend server
application to retrieve the current device status of a specified and valid smart plug. A MQTT
Publish request will be used for the backend server application to communicate any commands
to a specified target smart plug if possible.

Figure 6: Back End Block Diagram

4.3.3 General Validation
For validating the Code block, functional validation will be used. The function of the code has
the most important impact on the final system as a whole, hence function validation is crucial.

Functional Validation:

1. The system needs to be able to send data to the frontend application client based on the
request call to the program API. The code design shown includes steps for handling
HTTP GET requests. This step is in a loop, repeating each time a client performs a
HTTP GET request to the backend API. If this process fails, a timeout error will be
triggered and an error message will be sent back to the client.

2. The system needs to be able to retrieve data to the frontend application client based on
the application request to the API. The code design shown includes steps for handling
HTTP POST requests. This step is in a loop, repeating each time a client performs a
HTTP POST request to the backend API. If this process fails, a timeout error will be
triggered and an error message will be sent back to the client.

3. The system needs to be able to send data to smart hub clients based on frontend
application requests to the API. The code design shown includes steps for handling
HTTP POST requests and performing MQTT requests to the device specified in the
request. This step is in a loop, repeating each time a client performs a HTTP GET
request to the backend API.

4. The system needs to be able to connect and retrieve data from the smart hub clients
routinely. The code design shown includes steps routinely checking the statuses of each
smart plug device. This step is in a loop, repeating routinely and sending MQTT
subscribe requests to all the known and valid smart plug devices

4.3.4 Interface Validation
The tables below include the interface property validation for this block. All interface

properties have been addressed and the design meets or exceeds the properties.
Interface (cntrl_pp_frnt_nd_cntrl_pp_bck_nd_data) Property Validation for the Backend Code Block

Property Validation
Protocol: HTTP Python Flask API should be communicated through HTTP requests
Other: GET request Program contains code that handles GET HTTP requests from clients.
Other: Code Size less
than 4KB Program size could be measured and seen.

Other: Time delay less
than 1 second Time out added for requests to ensure response is within 1 second

Table 9: Back end property validation table

Interface (cntrl_pp_bck_nd_cntrl_pp_frnt_nd_data) Property Validation for the Backend Code Block

Property Validation
Protocol: HTTP Python Flask API should be communicated through HTTP requests
Other: POST request Program contains code that sends POST HTTP requests to clients.
Other: Code Size less
than 4KB Program size could be measured and seen.

Other: Time delay less
than 1 second Time out added for requests to ensure response is within 1 second

Table 10: Back end property validation table

Interface (cntrl_pp_bck_nd_smrt_hb_sftwr_data) Property Validation for the Backend Code Block

Property Validation
Protocol: MQTT Python Flask MQTT API should be able communicated through MQTT

requests [1]
Other: Publish request Program contains code that sends MQTT publish requests to clients.
Other: Code Size less
than 4KB Program size could be measured and seen.

Table 11: Back end property validation table

Interface (smrt_hb_sftwr_cntrl_pp_bck_nd_data) Property Validation for the Backend Code Block

Property Validation
Protocol: HTTP Python Flask MQTT API should be able communicated through MQTT

requests [1]
Other: Subscribe
request Program contains code that handles MQTT subscribe requests from clients.

Other: Code Size less
than 4KB Program size could be measured and seen.

Table 12: Back end property validation table 4.3.5 Verification Process
For this code block, test code to resemble the frontend application software and a test MQTT
client is required. The block could be verified through examining the data collected by the
frontend application test software, test MQTT client, and the readings from the backend server
application. Verification could be performed as followed:

Backend HTTP API verification:

- Tests interfaces cntrl_pp_frnt_nd_cntrl_pp_bck_nd_data HTTP GET and
cntrl_pp_bck_nd_cntrl_pp_frnt_nd_data HTTP POST requests.

1. Start up the backend server application on localhost and port 5000.
2. Setup test scripts that perform requests calls to the backend server application to mimic

frontend request calls.
a. Perform a HTTP GET to the path http://localhost:5000/device/info
b. Perform a HTTP POST to the path http://localhost:5000/device/command

3. Verify from the test scripts that both GET and POST requests are successful with status
200.

4. Verify from the backend server application that requests are retrieved from the test
script.

- PASS: To pass this test:
- The program must be able to send a data packet to the test frontend application

client timely with no data loss.
- Examine the data received from the test frontend application client

matches the data sent from the backend server application.
- Use time out for the API request to ensure data is received in under 1

second.
- The program must be able to receive a data packet to the test frontend

application client timely with no data loss.
- Examine the data received from the backend server application matches

the data sent from the test frontend application client.
- Use time out for the API request to ensure data is received in under 1

seconds.
- Program size less than 4KB.

Backend MQTT calls verification:

- Tests interfaces cntrl_pp_bck_nd_smrt_hb_sftwr_data MQTT publish and
smrt_hb_sftwr_cntrl_pp_bck_nd_data MQTT subscribe requests.

1. Start up the backend server application on localhost and port 5000.
2. Setup test MQTT client scripts that perform requests calls to the backend server

application to mimic smart hub client requests.
a. Perform a MQTT Publish to the topic mqtt_pub
b. Perform a MQTT Subscribe to the topic mqtt_sub

3. Verify from the test client that connection was successful and requests are sent and
retrieved.

4. Verify from the backend server application that connection was successful and requests
are sent and retrieved.

- PASS: To pass this test:
- The program must be able to send a data packet to the test MQTT client with no

data loss.
- Examine the data received from the test MQTT client matches the data

sent from the backend server application.
- The program must be able to receive a data packet to the test MQTT

client with no data loss.
- Examine the data received from the backend server application matches

the data sent from the test MQTT client.

4.3.6 References and File Links

[1] “Welcome to Flask — Flask Documentation (2.2.x),” flask.pallets projects.com.
https://flask.palletsprojects.com/en/2.2.x/

[2] S. Lehmann, “Flask-MQTT: Flask extension for the MQTT protocol,” PyPI.
https://pypi.org/project/Flask-MQTT/ (accessed Feb. 8, 2023).

4.3.7 Revision Table

03/12/2023 Jia Wei: Edited section to have latest information.

03/10/2023 Jia Wei: Populated the section on the Backend app software with content
from the block validation document.

4.4 Smart Plug Software

4.4.1 Description
The Code block serves as a software application for the smart plug. The program is written in
Arduino C to work within an esp microcontroller; the program uses MQTT subscribe to receive
commands from the smart hub, and uses MQTT publish to send out current status.

4.4.2 Design
The Internet of Things smart home project provides user mobile control over home electronic
appliances when attached to the project's smart plug and connected to the project’s smart hub.
To accomplish the home appliance control and management system, the code will retrieve

commands from MQTT topics published by the smart hub, perform the command, and update
its status in a MQTT topic.

MQTT is used for communication between the smart hub and the smart plug. The smart
plug will constantly poll commands from the topic published by the smart hub, and perform the
command it received. The smart plug will also constantly update its latest device by publishing
that information to a specific MQTT topic.

Figure 7: Smart Plug Software Block Diagram

4.4.3 General Validation
For validating the Code block, functional validation will be used. The function of the code has
the most important impact on the final system as a whole, hence function validation is crucial.

Functional Validation:

1. The system needs to be able to send data to the smart hub client by publishing current
status to a MQTT topic. This step is in a loop, repeating and updating current statuses at
a 1Hz rate. If this process fails, the MQTT topic will stop receiving any messages from
this system.

2. The system needs to be able to retrieve data from the smart hub client through
subscribing to the MQTT topic posted by the smart hub. This step is in a loop, repeating
and constantly polling for new commands by the client at a 1Hz rate. If this process fails,
an error message will be sent back to the client.

4.4.4 Interface Validation
The tables below include the interface property validation for this block. All interface

properties have been addressed and the design meets or exceeds the properties.

Interface (smrt_hb_sftwr_smrt_plg_sftwr_data Property Validation for the Smart Plug Code Block

Property Validation
Protocol: MQTT Arduino C PubSubClient library should communicate through MQTT [1].
Other: Subscribe Program contains code that handles MQTT topic subscription.
Other: Time delay less
than 1 second Time out added for requests to ensure response is within 1 second

Table 13: Smart PLug Software property validation table

Interface (smrt_plg_sftwr_smrt_hb_sftwr_data) Property Validation for the Backend Code Block

Property Validation
Protocol: MQTT Arduino C PubSubClient library should communicate through MQTT [1].
Other: Publish Program contains code that publishes to MQTT topics.
Other: Time delay less
than 1 second Time out added for requests to ensure response is within 1 second

4.4.5 Verification Process
For this code block, test code to resemble the smart hub software as a MQTT client is required.
The block could be verified through examining the data collected by the smart hub test software,
the readings from the smart plug application. Verification could be performed as followed:

Hub to Plug communication verification:
- Tests interface smrt_hb_sftwr_smrt_plg_sftwr_data
1. Start up the smart plug application.
2. Setup test scripts that perform MQTT publish to the device/mqtt_sub topic, to mimic

smart hub command communication.
3. Verify from the smart plug that commands are retrieved from the test script.
- PASS: To pass this test:

- The program must be able to receive a data packet to the test smart hub
application client timely with no data loss.

- Examine the data sent from the test application client matches the data
received by the smart hub application.

- Verify data retrieval rate is under 1 second.
- Program size less than 4KB.

Plug to Hub communication verification:
- Tests interfaces smrt_plg_sftwr_smrt_hb_sftwr_data
1. Start up the smart plug application.
2. Setup test MQTT client scripts that subscribes to the MQTT topic device/mqtt_pub, to

mimic smart hub plug-status retrieval.
3. Verify from the test client that connection was successful and messages could be

retrieved from the MQTT topic.
5. Verify from the smart plug application that connection was successful and messages

could be sent to the MQTT topic.

- PASS: To pass this test:
- The program must be able to send a data packet to the test smart hub application

client timely with no data loss.
- Examine the data sent from the smart plug matches the data received by

the test smart hub application.
- Verify data retrieval rate is under 1 second.

- Program size less than 4KB.

4.4.6 References and File Links

[1] “PubSubClient - Arduino Reference,” reference.arduino.cc.
https://reference.arduino.cc/reference/en/libraries/pubsubclient/ (accessed Mar. 13, 2023).

4.4.7 Revision Table

03/12/2023 Jia Wei: Edited section to have latest information.

03/10/2023 Jia Wei: Populated the section on the smart plug software.

4.5 Front End Control App

4.1.1 Description
This block is the front-end/design of our companion web application. This application will be
used to send commands to the main hub, and will communicate directly to the backend of our
web application. From there, commands will be sent to the hub. This application will allow the
user to the smart plug/switch, allowing for remote switching of outlet power. This application will
also allow the user to send generic commands to other connected devices. This application will
also show the status of current connected devices on the hub network. As stated earlier, all
direct connections and communication will be done with the web applications backend, which
will handle sending the proper commands and organization of incoming status messages from
connected devices on the network.

4.1.2 Design

Figure 8: Front End Software Block Diagram

4.1.3 General Validation
The intent of the front end software is mainly to provide an user input interface and status
message delivery system for the project as a whole. The general program flow was already
outlined in the design overview. As mentioned before, the requirement that this front end
application has to be full is that the system will provide the user a web application that 9 out
of 10 users say is easy to use '' while also meeting the interface definitions that will be
expanded upon below. To do this, there are three large steps that need to be taken. One, a
script
will be made that will exhaustively test all the input combinations for the user interface. Two,
two separate devices will be brought to validation, one touch screen mobile device and the other
is a laptop that interfaces through HID hardware such as a mouse. Three, set up a test terminal
and edit the front end software to provide explicit status messages for every button combination
so that validation can be done.
Later, a user survey can be conducted that evaluates the successfulness of this UI in relation to
the system requirements. According to Browserstack, blind user testing with a post-test survey
is
a commonly used way of testing the UI [2]. Specifically, a sample of 10 college students/peers
can be selected to participate in a survey that has them try to use all the features of the device
by
executing a series of commands to set-up a device, change its name, and then use all the
features.
The instructions will not say how to do these things. Each survey can be timed to make and
then
A small customer survey is given at the end [3].
To test the interfaces, we can utilize a simple .io script that executes html commands to test our
web-app. This script is also a javascript file that raises expectations from the input button on the
UI. In other words, it tests each button by raising an expected response and pressing a button

corresponding to a UI ID code. Finally, we can also just look at the output of the command
struct, because that is the only thing that the back-end software looks at to distribute commands
to the rest of the system.

4.1.4 Interface Validation
Interface Property Interface Value Property Justification

Otsd_cntrl_pp_frnt_nd_usrin

Other: Users must change the
name of connected devices on the
network via text boxes attributed
to each device tile. At a bare
minimum at least 4 buttons will be
present in the UI. (device on
on/off), device name change, save,
device information.)

User input must be
handled in this way from
either a touch screen
interacting with html
buttons or via a HID device
such as a mouse.

The web application must
allow for users to change
the name of their smart
plugs so that it is easy to
track in situations where
there are multiple devices
connected to the network.

Other: Front end will provide
buttons to manipulate connected
devices, such as switch plugs on
and off and sending code to
arduino units.

User input must be handled
in this way from either a
touch screen interacting
with html buttons or via a
HID device such as a
mouse.

The web app must be able
to manipulate devices and
buttons provides an easy
way to toggle device
functions. This so that the
basic use of the project is
handled in the UI (which is
a basic expectation).

Compatibility: HID / touch-screen Since the web-app needs to
be as portable as possible,
allowing for the most
common input type for web
apps makes sense.

Update rates are set by
devices, but allowing for
these input devices seems
like the bare minimum for
a web app.

Cntrl_pp_frnt_nd_cntrl_pp_bck_nd_data

Other: struct command contains
status of all buttons and the
current array of saved devices
names and associations. This
struct populates an array of button
status as integers, array of device
names, and for arduinos, the text
code input.

This struct will be a
javascripts struct that can
be sent or post requests to
node.js servers and also
can be read by the flask
python backend since it's
compatible with post
commands as well.

Since our backend and
front end are devicded,
abstracting the
communication between
the two will make
development and testing
easier. This also allows for
easier hosting on devices

that are not the raspberry
pi.

Other: update_in_status():
This function will be called on
button status changes to read all
button ideas and fill the user input
fields of the command struct.

This routine will be a
javascript function that the
front end will run every 5
seconds or will run with
changes to button status.
This populates the struct.

Abstraction and portability
are increased by this
decision. Front end
software has the aim of
being multiplatform and
therefore this method of
abstracting all updates into
parseable struct in and
http.post request increases
portability.

Update Rate: 0.2 Hz The status function should
update by itself so that
sanity checks with the back
end and connection
hardware can be done.

According to [4] and
looking at the study’s
optimal update rate 0.2 Hz
should be a good balance
for lower power device
control modules that are
not expected to be changed
very often.

Cntrl_pp_bck_nd_cntrl_pp_frnt_nd_data

Other: struct status will contain
updated devices array and update
devices_names array and another
array that will contain the status of
each device (for plugs it will be
on/off) and for arduinos it will be
confirmation of code execution).

This struct will contain
string data-type for device
ids, integer data types for
connection status, and the
rest will be integers. This is
because using these
primitive limits our
bandwidth usage.

Again, using this struct
based approach to the front
end allows for flexibility
for the backend and allows
the front end web server to
run on any devices on the
network as long as it can
connect the hub.

Other: update_out_status(): This
will post after the backend sends a
message that the packet was
delivered to the hub, then the
backend will update the status
struct to the latest value observed
from the hub so that the front end
and user can be informed. This
will populate the html with correct
values.

This layout makes the
backend and front-end
more spreadable and
portable because it makes
the interface between them
as abstracted as possible.

Using the status update
approach allows the
backend to tell the front
end when to update, which
also reduces the bandwidth
overhead and improves
efficiency.

Update Rate: 0.2 Hz The status function should
update by itself so that
sanity checks with the back
end and connection
hardware can be done.

According to [4] and
looking at the study’s
optimal update rate 0.2 Hz
should be a good balance
for lower power device
control modules that are
not expected to be changed
very often.

4.1.5 Verification Process
Verification Plan:

The verification plan goes as follows:

● First, I run the front end web server on a raspberry pi connected to an external monitor.

● Next, change the name of devices, observe terminal as update_status will print the
command struct to the screen.

● Next, add a device and observe that the device array has increased in size with the default
name added as the last element.

● Next, change the power state of smart plugs in UI and observe command structure.

● Next, Type code into the arduino sample box and observe code being passed to approve
the device in the command structure.

● Next, select save and run code commands and observe command structure being filled.

This will test the command struct exhaust. Now to test, update _status function this is where the
test script comes in.

● Load test script into web server as client and have it send status changes to front-end to
emulate the back end.

● Observed the test script is able to change all changeable parameters and observed the
changes are visible on the front-end.

If the UI updates, this implicitly proves that the status struct is also functioning as planned.

Finally, to test the user input and HID and touch screen compliance, the first part of the
verification can be done using both a laptop with multiple keyboards and mice, and two mobile
devices, an ipad and an android phone. This will test almost all types of devices expected to load
and interact with the front end and display the web application.

4.1.6 References and File Links
References and Links:

[1] Node.js, “About,” Node.js. [Online]. Available: https://nodejs.org/en/about/. [Accessed:
20-Jan-2023].

[2] S. Bose, “Ui Testing: A detailed guide,” BrowserStack, 27-Dec-2022. [Online]. Available:
https://www.browserstack.com/guide/ui-testing-guide. [Accessed: 11-Feb-2023].

[3] T. Hawkins, “How to unit test HTML and Vanilla JavaScript without a UI framework,” DEV
Community, 23-Apr-2020. [Online]. Available:
https://dev.to/thawkin3/how-to-unit-test-html-and-vanilla-javascript-without-a-ui-framework-4io.
[Accessed: 11-Feb-2023].

[4] L. Hu, Z. Chen, Y. Dong, Y. Jia, L. Liang and M. Wang, "Status Update in IoT Networks:
Age-of-Information Violation Probability and Optimal Update Rate," in IEEE Internet of Things
Journal, vol. 8, no. 14, pp. 11329-11344, 15 July 15, 2021, doi: 10.1109/JIOT.2021.3051722.

4.1.7 Revision Table
Revision Table:

1/28/2023 Initial draft created and finalized and added sections 1-7. -Matthew Gragg

2/10/23 Implemented draft feedback and created the final draft. -Matthew Gragg

4.6 Smart Hub Software

4.1.1 Description
The Smart hub will be a HTTPS socket layer/server, also using MQTT to schedule updates to
ESP32's running MQTT scheduling software. The main point is to provide MQTT brokering to all
connected devices.

4.1.2 Design
The control hub software’s main duty is to provide MQTT brokering and surveillance. This can
be done via a terminal.

Figure 9: Smart Hub Software Block Diagram

4.1.3 General Validation
Validation of this block can be simply done via viewing the terminal both publisher and
subscriber flows and seeing that MQTT messages and topics are updated.

4.1.4 Interface Validation
Interface Property Interface Value Property Justification

Otsd_cntrl_pp_frnt_nd_usrin

Other: Users must change the
name of connected devices on the
network via text boxes attributed
to each device tile. At a bare
minimum at least 4 buttons will be
present in the UI. (device on
on/off), device name change, save,
device information.)

User input must be
handled in this way from
either a touch screen
interacting with html
buttons or via a HID device
such as a mouse.

The web application must
allow for users to change
the name of their smart
plugs so that it is easy to
track in situations where
there are multiple devices
connected to the network.

Other: Front end will provide
buttons to manipulate connected
devices, such as switch plugs on
and off and sending code to
arduino units.

User input must be handled
in this way from either a
touch screen interacting
with html buttons or via a
HID device such as a
mouse.

The web app must be able
to manipulate devices and
buttons provides an easy
way to toggle device
functions. This so that the
basic use of the project is
handled in the UI (which is
a basic expectation).

Compatibility: HID / touch-screen Since the web-app needs to
be as portable as possible,
allowing for the most
common input type for web
apps makes sense.

Update rates are set by
devices, but allowing for
these input devices seems
like the bare minimum for
a web app.

Cntrl_pp_frnt_nd_cntrl_pp_bck_nd_data

Other: struct command contains
status of all buttons and the
current array of saved devices
names and associations. This
struct populates an array of button
status as integers, array of device
names, and for arduinos, the text
code input.

This struct will be a
javascripts struct that can
be sent or post requests to
node.js servers and also
can be read by the flask
python backend since it's
compatible with post
commands as well.

Since our backend and
front end are devicded,
abstracting the
communication between
the two will make
development and testing
easier. This also allows for
easier hosting on devices
that are not the raspberry
pi.

Other: update_in_status():
This function will be called on
button status changes to read all
button ideas and fill the user input
fields of the command struct.

This routine will be a
javascript function that the
front end will run every 5
seconds or will run with
changes to button status.
This populates the struct.

Abstraction and portability
are increased by this
decision. Front end
software has the aim of
being multiplatform and
therefore this method of
abstracting all updates into
parseable struct in and
http.post request increases
portability.

Update Rate: 0.2 Hz The status function should
update by itself so that
sanity checks with the back
end and connection
hardware can be done.

According to [4] and
looking at the study’s
optimal update rate 0.2 Hz
should be a good balance
for lower power device
control modules that are

not expected to be changed
very often.

Cntrl_pp_bck_nd_cntrl_pp_frnt_nd_data

Other: struct status will contain
updated devices array and update
devices_names array and another
array that will contain the status of
each device (for plugs it will be
on/off) and for arduinos it will be
confirmation of code execution).

This struct will contain
string data-type for device
ids, integer data types for
connection status, and the
rest will be integers. This is
because using these
primitive limits our
bandwidth usage.

Again, using this struct
based approach to the front
end allows for flexibility
for the backend and allows
the front end web server to
run on any devices on the
network as long as it can
connect the hub.

Other: update_out_status(): This
will post after the backend sends a
message that the packet was
delivered to the hub, then the
backend will update the status
struct to the latest value observed
from the hub so that the front end
and user can be informed. This
will populate the html with correct
values.

This layout makes the
backend and front-end
more spreadable and
portable because it makes
the interface between them
as abstracted as possible.

Using the status update
approach allows the
backend to tell the front
end when to update, which
also reduces the bandwidth
overhead and improves
efficiency.

Update Rate: 0.2 Hz The status function should
update by itself so that
sanity checks with the back
end and connection
hardware can be done.

According to [4] and
looking at the study’s
optimal update rate 0.2 Hz
should be a good balance
for lower power device
control modules that are
not expected to be changed
very often.

4.1.5 Verification Process
● Observe Publisher and subscriber terminals.
● Check to see if all devices are posting.

4.1.6 References and File Links
[1] Node.js, “About,” Node.js. [Online]. Available: https://nodejs.org/en/about/. [Accessed:
20-Jan-2023].

[2] S. Bose, “Ui Testing: A detailed guide,” BrowserStack, 27-Dec-2022. [Online]. Available:
https://www.browserstack.com/guide/ui-testing-guide. [Accessed: 11-Feb-2023].

[3] T. Hawkins, “How to unit test HTML and Vanilla JavaScript without a UI framework,” DEV
Community, 23-Apr-2020. [Online]. Available:
https://dev.to/thawkin3/how-to-unit-test-html-and-vanilla-javascript-without-a-ui-framework-4io.
[Accessed: 11-Feb-2023].

[4] L. Hu, Z. Chen, Y. Dong, Y. Jia, L. Liang and M. Wang, "Status Update in IoT Networks:
Age-of-Information Violation Probability and Optimal Update Rate," in IEEE Internet of Things
Journal, vol. 8, no. 14, pp. 11329-11344, 15 July 15, 2021, doi: 10.1109/JIOT.2021.3051722.

4.1.7 Revision Table

Revision Description

1 Initial Revision

2 Final Revision

4.7 Smart Plug Enclosure
Block Champion: Kristina Mason
Date: Mar-08-2023

4.1.1 Description
An enclosure for the smart plug, where the circuit and microcontroller for the Smart Plug are in
it. This enclosure will be able to withstand the shock of being dropped from chest height. The
enclosure will also not conduct electricity to the outer world, ensuring the safety of those who
will use this device.

4.1.2 Design

Figure 10: Smart Plug Enclosure Block Diagram

4.1.3 General Validation
This system will protect both the users and the internal hardware of the system from outside
forces, most commonly seen in households.

4.1.4 Interface Validation
This block has no interfaces, since it doesn’t interact with other parts of the whole system, but
instead protects a single block from the outside world.

4.1.5 Verification Process
To verify that the enclosure does its job, the enclosure will need to be examined to make sure
there are no exposed wires. Kicking and hitting the enclosure will also test to see if it can protect
the circuit from bumps and keep the circuit functioning despite the disturbances. Touching the
enclosure should not shock the user or harm them in any way.

4.1.6 References and File Links

4.1.7 Revision Table

Revision Description

1 Initial Revision

4.8 Smart Plug Hardware
Block Champion: Kristina Mason
Date: Mar-08-2023

1. Description

The hardware and circuitry required to create a smart plug in which it will act as a wirelessly
activated relay activating an incandescent or LED light bulb usually placed into lamps. Inside of
the Smart Plug will be an ESP32 microcontroller along with a transformer that will turn the
voltage output from the microcontroller into a voltage high enough to power lightbulbs and other
AC powered devices.

2. Design

Figure 11: Smart Plug Hardware Block Diagram
Schematic:

Figure 12: Smart Plug Hardware schematic

3. General Validation
The sub-system design meets the requirements of this block because it will be able to be
powered by mains voltage and direct that power to an external device. This sub-system will also
be able to power any DC powered components within this block, like the ESP32, by converting
the AC mains into ~5VDC.

4. Interface Validation

Interface
Property

Why is this interface this value? Why do you know that your design
details for this block above meet or

exceed each property?

otsd_smrt_plg_hrdwr_dcpwr : Input

Inominal:
.5ADC

ESP32 needs at least .5A in order
to function.

The output current of the
transformer is 2A, well over the

bare minimum to run the ESP32

Ipeak: 1ADC It is unnecessary that any part of
the design would need more than
1A of current.

The output current of the
transformer is 2A.

Vmax: 12VDC The voltage regulator can
handle a max of 15V, but going
to the absolute max voltage
rating would break it, so the
more common 12V will be used.

The transformer is able to output
12VAC.

Vmin: 5VDC The minimum voltage the relay
can use is 5V, any lower and the
relay wouldn’t be able to
function.

The voltage divider in the circuit
reduces the 12V to approx. 6V,
so this will work.

otsd_smrt_plg_hrdwr_acpwr : Input

Inominal: 5A The transformer doesn’t need a
minimum current to function and
the lightbulbs only need a little
current in order to turn on
without burning out.

Ipeak: 10A The relay’s contact rating was
10A/250VAC, so the max current
the relay can take and give is
10A.

Vnominal:
120VAC

The voltage given from mains
voltage in most American homes
is 120VAC.

smrt_plg_hrdwr_otsd_acpwr : Output

Inominal: 0.08
Amps AC (With
Nominal power
being 10W at
120VAC)

The lightbulbs don’t need that
much current to function and the
power ratings of most LED light
bulbs is 6-10W.

Ipeak: 0.17
Amps AC (Max
power being
20W at
120VAC)

The current taken by
incandescent bulbs is around
0.17 Amps AC, using 20W at
most.

Vnominal:
120VAC to
power lamps
that run on AC
power

The voltage taken from mains
will be passed along to any
device connected to the smart
plug, 120VAC.

5. Verification Plan
In order to verify:

1. Send signal to microcontroller from computer
2. Check if lightbulb/device turns on and relay activates

6. References and File Links

7. Revision Table

Revision Description

1 Initial Revision

5. System Verification Evidence

5.1 Universal Constraints
5.1.1. The system may not include a breadboard
All the parts of this system are built on a protoboard or a PCB. A breadboard was used for
prototyping and the final system was made later. Shown below are the Smart Hub and smart
plug circuits that do not include a breadboard

Figure 13: Smart Hub Circuit

Figure 14: Smart Plug Circuit

5.1.2. The final system must contain a student designed PCB.
The PCB that the group owns has at least 30 non-connector surface mount pads that are used.

Figure 15: Buck Converter Schematic.

Figure 16: Buck Converter PCB

Figure 17: Fully assembled Buck Converter

5.1.3. All connections to PCBs must use connectors.
The Buck Converter has a wire connection to the inductor because the footprints chosen were
too small for the part that was bought.

5.1.4. All power supplies in the system must be at least 65% efficient.
Due to inefficiencies in the equipment used, the wall power recorded is not able to be used in
the efficiency calculations. However, upon calculation on the primary side of the transformer and
after the rectifier circuit, the efficiency meets this requirement.

Figure 18: Power Verification Measurements

This measurement shows an input voltage supply of 14V at 0.09A, Pin equals 1.26
There is an output current of 0.243A, and according to the Raspberry Pi datasheet, a
voltage draw of 5V. The efficiency is therefore 96%

Figure 19: Power Verification Measurements

The calculation above shows an input of 14V at 0.07A, 0.98A. And an output of 0.128A
and according to the Raspberry Pi datasheet, the voltage draw is 5V. Therefore the Pout
is 0.64W. The efficiency is therefore 65%

These two calculations were taken at different stages of testing, and upon averaging the results,
the efficiency is 80.5%

5.1.5. The system may be no more than 50% built from purchased 'modules.'
At least half of the parts in our current system are built modules.

Proof: Smart Hub and Smart Plug hardware.
Link to spreadsheet:
https://docs.google.com/spreadsheets/d/e/2PACX-1vTha0chZ_y6ila4ewjeU-JxDi3eggg3RboFxR
cfD6X3P5fijIPPiDtw1FS05m-Ce7u8DhlV6aoTS_mD/pubhtml

https://docs.google.com/spreadsheets/d/e/2PACX-1vTha0chZ_y6ila4ewjeU-JxDi3eggg3RboFxRcfD6X3P5fijIPPiDtw1FS05m-Ce7u8DhlV6aoTS_mD/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vTha0chZ_y6ila4ewjeU-JxDi3eggg3RboFxRcfD6X3P5fijIPPiDtw1FS05m-Ce7u8DhlV6aoTS_mD/pubhtml

5.2 Requirements
5.2.1. Requirement Short Name: Communication between 3 nodes(Verified on 5/8/2023)

5.2.1.1. Project Partner Requirement: Communication between 3 devices must be
present
5.2.1.2. Engineering Requirement: The system will have at least 3 devices that will
communicate with each other in order to cause an event to occur.
5.2.1.3. Verification Process:

1. Enter a device number and the word “ON” after it via the user interface
2. Watch as the bulb goes on (due to connection to the ESP32)
3. The computer screen connected to the Raspberry Pi would show a

corresponding “ON” and “OFF” message corresponding to the message sent to
the ESP32.

4. This shows connection between the laptop, the ESP32 and the Raspberry Pi

5.2.1.4. Testing Evidence:

Link to video:
https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=
share_link

5.2.2:Requirement Short Name: Expandable IOT Device Documentation(Verified on 5/8/2023)
5.2.2.1. Project Partner Requirement: The user will be provided with complete online
documentation
5.2.2.2. Engineering Requirement: The system will have online documentation that 9 out
of 10 university students after reviewing say is "complete and easy to understand".
5.2.2.3. Verification Process:

1. Take a look at the survey results
2. Note that 9 out of 10 people approved the documentation

5.2.2.4. Testing Evidence:
Link to documentation:
https://docs.google.com/document/d/1ZECVT21oMQCCYkDWFhx_fBS1GbHDvlJm
FqapXIvT2Hc/edit

Figure 20:Survey Results

Survey Results:

Name Email

Is the provided
documentation
complete and easy
to understand?

Wei Yu Tang
tangwe@oregonsta
te.edu Yes

Adam Farhat
farhata@oregonstat
e.edu Yes

https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=share_link
https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=share_link
https://docs.google.com/document/d/1ZECVT21oMQCCYkDWFhx_fBS1GbHDvlJmFqapXIvT2Hc/edit
https://docs.google.com/document/d/1ZECVT21oMQCCYkDWFhx_fBS1GbHDvlJmFqapXIvT2Hc/edit

Michael Chen
chenmich@oregons
tate.edu Yes

Patrick Liang
liangpa@oregonsta
te.edu Yes

Adam Grzelewski
agrzelewa@oregon
state.edu Yes

Benjamin
gunadib@oregonst
ate.edu Yes

Jessica Lee
jessicalee0985@g
mail.com Yes

Chelsey Chiu gi25ni@gmail.com Yes

Paul
pauldania11@gmail
.com Yes

Ting-hsuan Chen
chenting@oregonst
ate.edu Yes

Preston Hang
hangp@oregonstat
e.edu Yes

Madalyn Gragg
graggma@oregonst
ate.edu Yes

Parn
tiangdab@oregonst
ate.edu Yes

Nicole Aimba
aimban@oregonsta
te.edu Yes

Lyon Kee
keel@oregonstate.
edu Yes

Yu Wei Koh
kohyu@oregonstat
e.edu Yes

5.2.3: Requirement Short Name:Power Input(Verified on 3/14/2023)
5.2.3.1.Project Partner Requirement: Product should be able to be powered from an
external source
5.2.3.2.Engineering Requirement: The system hub sub-system will be powered by
120VAC.
5.2.3.3.Verification Process:

1. Connect a DMM to the output of the Smart hub/Smart Plug circuit
2. Set the DMM to read DC voltage
3. Plug in the smart hub/smart plug circuit into the wall outlet
4. Turn on the switch if relevant
5. Read the voltage on the DMM, demonstrating that the circuit is being powered by

the wall.

5.2.3.4.Testing Evidence: System verification demonstration
Link to video:
https://drive.google.com/file/d/1hwDvYTrY3sru6wUC9r6RUEdJhv5NEDZN/view?us
p=share_link

5.2.4: Requirement Short Name: Project Budget(Verified on 3/14/2023)
5.2.4.1.Project Partner Requirement: Building this project must not exceed $300
5.2.4.2.Engineering Requirement: Find components and materials that, when the costs
are totaled, don't exceed $300 in order to make this IOT device
5.2.4.3.Verification Process: (Verified on 3/15/2023)

1. Reference the Combined IOT BOM which entails the Smart Plug BOM and the
Smart Hub BOM.

5.2.4.4.Testing Evidence: Bill of Materials presented to TA’s during system verification
Link to BOM: Combined IOT BOM

5.2.5: Requirement Short Name: Transmission Distance
5.2.5.1. Project Partner Requirement: The system should provide a signal strong enough
to be detected by conventional devices.
5.2.5.2. Engineering Requirement: The system will be able to provide -67 dB of signal
strength at 200 centimeters.
5.2.5.3. Verification Process:

1. Place the smart hub 200 cm away from the smart plug.
2. Place a tape measure in between the two smart devices.
3. Send a message between the two devices to verify whether transmission works.

5.2.5.4. Testing Evidence:
Link to video:
https://drive.google.com/file/d/1-O3d5DSO6-p5O8bCaZkMKeFu61gY5cGK/view?us
p=share_link

5.2.6: Requirement Short Name: User Interface(Verified on 5/8/2023)
5.2.6.1. Project Partner Requirement: Users should be able to control the devices easily
from an application
5.2.6.2. Engineering Requirement: The system will provide the user a web application
that 9 out of 10 users say is easy to use.
5.2.6.3. Verification Process:

1. Enter a device number and the word “ON” after it via the user interface
2. Watch as the bulb goes on (due to connection via the laptop i.e. user interface,

and the ESP32)
3. The computer screen connected to the Raspberry Pi would show a

corresponding “ON” and “OFF” message corresponding to the message sent to
the ESP32.

4. One can also turn off a device via the user interface using the power button.
5. Users who used our software application would then fill in our survey.

https://drive.google.com/file/d/1hwDvYTrY3sru6wUC9r6RUEdJhv5NEDZN/view?usp=share_link
https://drive.google.com/file/d/1hwDvYTrY3sru6wUC9r6RUEdJhv5NEDZN/view?usp=share_link
https://docs.google.com/spreadsheets/d/e/2PACX-1vRTwxklAcsG0oeJi37BrhX_6dcS2TFGkNxOdjKbL1WlMvmAzynEdbZSIDwiz31ztSmFrqtBzUC18eXN/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vSTrKNzgEyj0m-YLY5LMmFDNNR6L58hdYarM14oBZX3jF3bd2psrr6zgOo5oze3LHTLGqSYXlqeZIF6/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRmMGISnWZnRh2jvBIEkxuExQeuG2Lvhg9NUhSbvfvBiEXSQXLMVN1AIk6uAPoc8znSqotDR2Q_Tfml/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRTwxklAcsG0oeJi37BrhX_6dcS2TFGkNxOdjKbL1WlMvmAzynEdbZSIDwiz31ztSmFrqtBzUC18eXN/pubhtml
https://drive.google.com/file/d/1-O3d5DSO6-p5O8bCaZkMKeFu61gY5cGK/view?usp=share_link
https://drive.google.com/file/d/1-O3d5DSO6-p5O8bCaZkMKeFu61gY5cGK/view?usp=share_link

5.2.6.4. Testing Evidence: Image of UI below

Figure 21:User Interface

Survey Results:

Figure 22: Survey Results

Name Email

Is the App UI clean
and easy to
understand?

Could you easily
use the provided
App UI?

Is the provided
documentation
complete and easy
to understand?

Wei Yu Tang
tangwe@oregonsta
te.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Adam Farhat
farhata@oregonstat
e.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Michael Chen
chenmich@oregons
tate.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Patrick Liang
liangpa@oregonsta
te.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Adam Grzelewski
agrzelewa@oregon
state.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Benjamin
gunadib@oregonst
ate.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Jessica Lee
jessicalee0985@g
mail.com

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Chelsey Chiu gi25ni@gmail.com
Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Paul
pauldania11@gmail
.com

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Ting-hsuan Chen
chenting@oregonst
ate.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Preston Hang
hangp@oregonstat
e.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Madalyn Gragg
graggma@oregonst
ate.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Parn
tiangdab@oregonst
ate.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Nicole Aimba
aimban@oregonsta
te.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Lyon Kee
keel@oregonstate.
edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

Yu Wei Koh
kohyu@oregonstat
e.edu

Yes, it's clean and
easy to understand.

Yes, the UI is easy
to use. Yes

5.2.7: Requirement Short Name: Wireless Communication Connection(Verified on 5/8/2023)
5.2.7.1. Project Partner Requirement: The device must be able to communicate with
other devices via a network
5.2.7.2. Engineering Requirement: The subsystems will communicate with each other
over a wireless network
5.2.7.3. Verification Process:

1. Enter a device number and the word “ON” after it via the user interface
2. Watch as the bulb goes on (due to connection to the ESP32)

3. The computer screen connected to the Raspberry Pi would show a corresponding “ON”
and “OFF” message corresponding to the message sent to the ESP32.

4. This shows connection between the laptop, the ESP32 and the Raspberry Pi

5.2.7.4. Testing Evidence:
Link to video:
https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=
share_link

5.2.8: Requirement Short Name:Wireless communication speed
5.2.8.1.Project Partner Requirement: Wireless Communication between devices should
be fast
5.2.8.2. Engineering Requirement: The system will perform communication wirelessly
under 1 second
5.2.8.3. Verification Process:

1. Enter a device number and the word “ON” after it via the user interface
2. Watch as the bulb goes on (due to connection to the ESP32)
3. The computer screen connected to the Raspberry Pi would show a corresponding “ON”

and “OFF” message corresponding to the message sent to the ESP32.
4. This shows connection between the laptop, the ESP32 and the Raspberry Pi

5.2.8.4. Testing Evidence:
Link to video:
https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=
share_link

Figure 23: Client Response Timing Screenshot

https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=share_link
https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=share_link
https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=share_link
https://drive.google.com/file/d/1DwL_NnmIjqLLSl2eUJljlYrAkOSsZXSF/view?usp=share_link

Figure 24: Client Response Timing Screenshot 2

5.3 References and file links
a. References

[1] Project Document guide -
https://docs.google.com/document/d/e/2PACX-1vSTGN-MsnjkEHcNywmy30H1PFOFKHb0VqD
k4epHT8vFfdkYmJU_G73ZmjhTbj4UtabMG7anF15-OSYx/pub

b. File links
[2] Transformer datasheet -
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P463-141995
8697.pdf
[3] ESP32 datasheet -
https://cdn-shop.adafruit.com/product-files/3269/esp32_datasheet_en_0.pdf
[4] Smart Hub BOM -
https://docs.google.com/spreadsheets/d/e/2PACX-1vRmMGISnWZnRh2jvBIEkxuExQeu
G2Lvhg9NUhSbvfvBiEXSQXLMVN1AIk6uAPoc8znSqotDR2Q_Tfml/pubhtml
[5]Smart Plug BOM -
https://docs.google.com/spreadsheets/d/e/2PACX-1vSTrKNzgEyj0m-YLY5LMmFDNNR6
L58hdYarM14oBZX3jF3bd2psrr6zgOo5oze3LHTLGqSYXlqeZIF6/pubhtml
[6] Combined IOT BOM -
https://docs.google.com/spreadsheets/d/e/2PACX-1vRTwxklAcsG0oeJi37BrhX_6dcS2T
FGkNxOdjKbL1WlMvmAzynEdbZSIDwiz31ztSmFrqtBzUC18eXN/pubhtml

5.4 Revision Table

Revision Description

3/13/2023 Team: Entered the requirements and wrote
about some verification processes.

https://docs.google.com/document/d/e/2PACX-1vSTGN-MsnjkEHcNywmy30H1PFOFKHb0VqDk4epHT8vFfdkYmJU_G73ZmjhTbj4UtabMG7anF15-OSYx/pub
https://docs.google.com/document/d/e/2PACX-1vSTGN-MsnjkEHcNywmy30H1PFOFKHb0VqDk4epHT8vFfdkYmJU_G73ZmjhTbj4UtabMG7anF15-OSYx/pub
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P463-1419958697.pdf
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P463-1419958697.pdf
https://cdn-shop.adafruit.com/product-files/3269/esp32_datasheet_en_0.pdf
https://docs.google.com/spreadsheets/d/e/2PACX-1vRmMGISnWZnRh2jvBIEkxuExQeuG2Lvhg9NUhSbvfvBiEXSQXLMVN1AIk6uAPoc8znSqotDR2Q_Tfml/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRmMGISnWZnRh2jvBIEkxuExQeuG2Lvhg9NUhSbvfvBiEXSQXLMVN1AIk6uAPoc8znSqotDR2Q_Tfml/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vSTrKNzgEyj0m-YLY5LMmFDNNR6L58hdYarM14oBZX3jF3bd2psrr6zgOo5oze3LHTLGqSYXlqeZIF6/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vSTrKNzgEyj0m-YLY5LMmFDNNR6L58hdYarM14oBZX3jF3bd2psrr6zgOo5oze3LHTLGqSYXlqeZIF6/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRTwxklAcsG0oeJi37BrhX_6dcS2TFGkNxOdjKbL1WlMvmAzynEdbZSIDwiz31ztSmFrqtBzUC18eXN/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRTwxklAcsG0oeJi37BrhX_6dcS2TFGkNxOdjKbL1WlMvmAzynEdbZSIDwiz31ztSmFrqtBzUC18eXN/pubhtml

5/5/2023 Team: Updated Engineering requirements

6. Project Closing

6.1 Future Recommendations
6.1.1 Technical Recommendations

- If possible, get a smaller transformer to shrink the size of the project. We are currently
using the “Hammond Manufacturing” transformer which is 93mm by 62mm, and is quite
heavy. However, we have explored other transformer options such as the “P5009NL
Pulse Transformer” [1], but they proved faulty.

- Once one block is somewhat completed, try to integrate/test it out as soon as possible
with other blocks to make changes in the process as early as possible. This is because it
prevents the team from progressing too much with a faulty prototype/block

- Make sure everything is wired correctly when dealing with mains power, because mains
power is rated at 50/60Hz at 120V, can kill, and has a high current/voltage which can
damage one's circuit.

- Be aware of explosions, fire, electrocutions and other calamities. Have an emergency
plan in place when testing. This is because testing with mains power can be dangerous
and result in fires if done incorrectly/without caution.

Links:

[1] Electrical Engineering and computer science. TekBots. (n.d.). Retrieved April 28, 2023,
from
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P463-14199586
97.pdf

6.1.2 Global Recommendations
- Lead solder is considered hazardous, make sure to dispose of it accordingly. We would

suggest purchasing lead-free solder so that you do not have to dispose of the whole
circuit later or inhale hazardous fumes while soldering [1].

- Working with Mains voltage is hazardous, make sure there are no exposed wires coming
from Mains power. Make sure to read the datasheets of modules to see if they are rated
for mains power, and what voltage and current they can handle. Do not touch any
exposed wires while connected to mains power and keep one hand away from the circuit
to avoid creating a closed loop and getting electrocuted.

Links:

[1] Environmental Protection Agency. (n.d.). Questions about the disposal of
lead-contaminated items | hazardous waste treatment, storage & disposal. EPA. Retrieved
April 28, 2023, from https://archive.epa.gov/epawaste/hazard/web/html/faq-2.html

https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P463-1419958697.pdf
https://eecs.engineering.oregonstate.edu/education/inventory_datasheets/P463-1419958697.pdf
https://archive.epa.gov/epawaste/hazard/web/html/faq-2.html

6.1.3 Teamwork Recommendations
- Meet as often as you can especially since during Senior year people have busy

schedules and it is harder to stay on top of things. Make sure each meeting has an
agenda and each member is assigned a role in order to ensure that the meeting is
productive. Take notes to have a reference and look back on past designs.

- Distribute the blocks in a way that reduces team dependency. This enables the progress
of one member to not be deterred by the progress of another while ensuring combined
progress of the team. Make sure to discuss the full system functionality, and ensure that
each member understands what is expected of them and the deadlines as well.

- Make sure that the team is in sync with the “technical terms/software” that the team is
using.i.e. Versions of software. For example, make sure that two members working on
the software side of the project, i.e. frontend and backend, use languages and softwares
that are compatible with each other

Links:

[1] ECE Senior Design 2022-2023. (n.d.). Retrieved April 28, 2023, from
https://eecs.engineering.oregonstate.edu/capstone/ece/student/index.php

6.2 Project Artifact Summary with Links

Figure 25: Smart Plug Schematic

https://eecs.engineering.oregonstate.edu/capstone/ece/student/index.php

Link to Schematic file:
https://drive.google.com/file/d/15A1mdkph68LrdeMObT__GDXUUdBiTJg_/view?usp=share_link

Figure 26: Rectifier Circuit Schematic

Figure 27: Smart Plug PCB Design
Link to PCB file:
https://drive.google.com/file/d/1TrKqyJlBJ1DuBQQcSjsAqDtCEqKl2uX1/view?usp=share_link

https://drive.google.com/file/d/15A1mdkph68LrdeMObT__GDXUUdBiTJg_/view?usp=share_link
https://drive.google.com/file/d/1TrKqyJlBJ1DuBQQcSjsAqDtCEqKl2uX1/view?usp=share_link

Smart Plug BOM:
https://drive.google.com/file/d/1JrmuxklPdQslJT-PrPba3js4_QwtwNht/view?usp=sharing

https://drive.google.com/file/d/1JrmuxklPdQslJT-PrPba3js4_QwtwNht/view?usp=sharing

Figure 28: HIgh Level Hardware Diagram

Figure 29: High Level Software
Project Github Link: https://github.com/Mattgrg/Sr.-Project
Code Breakdown:
user_app : Backend and API code.

https://github.com/Mattgrg/Sr.-Project

User_app_frontend: User app html, styling, and webserver.

Figure 30: Smart Hub Enclosure
https://drive.google.com/file/d/1d3GbehmJC5RpVB5hYlpk8KMhre2BrHHy/view?usp=share_link

https://drive.google.com/file/d/1d3GbehmJC5RpVB5hYlpk8KMhre2BrHHy/view?usp=share_link

6.3 Presentation Materials

Figure 31: Project Poster

Link to Project showcase page:
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=0ohprz42aRrUiyHo

https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=0ohprz42aRrUiyHo

