
Sensor System for Self-Driven In-Home
Climate Control

Team 20

Blake Wiker, Jadon Roth, James Beans, Yousif Albaker

Table of Contents

1. Overview 8
1.1. Executive Summary 8
1.2. Team Contacts and Protocols 8

Table 1.1. Group Member Information and Roles 8
Table 1.2. Group Protocols 9
Mentor Collaboration 10

1.3. Gap Analysis 10
1.4. Timeline/Proposed Timeline 12

Table 1.3. Timeline 12
1.5. References and File Links 14

1.5.1. References (IEEE) 14
1.5.2. File Links 14

1.6. Revision Table 14
2. Impacts and Risk 14

2.1. Design Impact Statement 14
2.2. Risk 16

Table 2.1. Risk Assessment and Action Plans 16
2.3. References and File Links 18

2.3.1. References (IEEE) 18
2.3.2. File Links 18

2.4. Revision Table 18
3. Top-Level Architecture 19

3.1. Block Diagram 19
Figure 3.1: System Black Box Diagram 19
Figure 3.2: System Block Diagram 20

3.2. Block Descriptions 21
Table 3.1: Block Descriptions 21
3.3. Interface Definitions 24

Table 3.2: Interface Definitions 24
3.4. References and File Links 27

3.4.1. References (IEEE) 27
3.4.2. File Links 27

3.5. Revision Table 27
4. Block Validations 28

4.1. GUI 28
4.1.1. Description 28
4.1.2. Design 28

Figure 4.1: GUI Black Box Diagram 29
Figure 4.2: GUI Flow Chart 30

4.1.3. General Validation 30
4.1.4. Interface Validation 31

Table 4.1: otsd_g_usrin : Input 31
Table 4.2: g_otsd_usrout : Output 32
Table 4.3: g_ntfctns_data : Output 32
Table 4.4: g_cmpttn_data : Output 33
Table 4.5: g_mcrcntrllr_rf : Output 34
Table 4.6: dtbs_g_rf : Input 34
Table 4.7: cmpttn_g_data : Input 35

4.1.5. Verification Plan 36
4.1.6. References and File Links 36
4.1.7. Revision Table 37

4.2. Notifications 37
4.2.1. Description 37
4.2.2. Design 37

Figure 4.3: Notification Black Box Diagram 38
Figure 4.4: Notification Flow Chart 39

4.2.3. General Validation 39
4.2.4. Interface Validation 40

Table 4.8: g_ntfctns_data : Input 40
Table 4.9: ntfctns_otsd_usrout : Output 41

4.2.5. Verification Plan 41
4.2.6. References and File Links 41
4.2.7. Revision Table 42

4.3. Enclosure 42
4.3.1. Description 42
4.3.2. Design 42

Figure 4.5: Black box diagram displaying our inputs and outputs 43
Figure 4.6: Design of the enclosure block 43

4.3.3. General Validation 43
4.3.4. Interface Validation 44

Table 4.10: otsd_enclsr_envin: Input 44
Table 4.11: enclsr_pwr_lctmcs_mech: output 45

4.3.5. Verification Plan 45
4.3.6. References and File Links 46
4.3.7. Revision Table 46

4.4. Power Electronics 46
4.4.1. Description 46
4.4.2. Design 46

Figure 4.7: Black box diagram displaying our inputs and outputs 47

Figure 4.8: Design of the power electronics block. 47
4.4.3. General Validation 48
4.4.4. Interface Validation 48

Table 4.12: enclsr_pwr_lctrncs_mech : Input 48
Table 4.13: otsd_pwr_lctrncs_dcpwr: Input 49
Table 4.14: pwr_lctrncs_mcrcntrllr_dcpwr: Output 50
Table 4.15: pwr_lctrncs_snsrs_dcpwr: Output 51

4.4.5. Verification Plan 51
4.4.6. References and File Links 52

4.4.7. Revision Table 53
4.5. Microcontroller 53

4.5.1. Description 53
4.5.2. Design 54

Figure 4.9: Microcontroller Black Box Diagram 54
Figure 4.10: ESP32 Module 54
Figure 4.11: USB and UART 55
Figure 4.12: Buttons 56
Figure 4.13: Connectors 56
Figure 4.14: Layout 57

4.5.3. General Validation 57
4.5.4. Interface Validation 57

Table 4.16: g_mcrcntrllr_rf : Input 58
Table 4.17: snsrs_mcrcntrllr_comm : Input 58
Table 4.18: pwr_lctrncs_mcrcntrllr_dcpwr : Input 58
Table 4.19: mcrcntrllr_dtbs_rf : Output 59
Table 4.20: mcrcntrllr_mcrcntrllr_cd_comm : Output 59
Table 4.21: mcrcntrllr_cd_mcrcntrllr_comm : Input 60

4.5.5. Verification Plan 61
4.5.6. References and File Links 61
4.5.7. Revision Table 61

4.6. Microcontroller Code 62
4.6.1. Description 62
4.6.2. Design 62

Figure 4.15: Microcontroller Code Black Box Diagram 62
Figure 4.16: Microcontroller Code Flow Chart 63

4.6.3. General Validation 63
4.6.4. Interface Validation 64

Table 4.20: mcrcntrllr_mcrcntrllr_cd_comm : Input 64
Table 4.21: mcrcntrllr_cd_mcrcntrllr_comm : Output 65

4.6.5. Verification Plan 65

4.6.6. References and File Links 66
4.6.7. Revision Table 66

4.7. Sensors 66
4.7.1. Description 66
4.7.2. Design 66

Figure 4.17: Sensor Black Box Diagram 67
4.7.3. General Validation 67
4.7.4. Interface Validation 67

Table 4.22: otsd_snsrs_envin : Input 68
4.7.5. Verification Plan 69
4.7.6. References and File Links 69
4.7.7. Revision Table 69

4.8. Computation 70
4.8.1. Description 70
4.8.2. Design 70

Figure 4.18: Black Box Computation Diagram 71
Figure 4.19: Calculation Code Flow Chart 72

4.8.3. General Validation 72
4.8.4. Interface Validation 73

Table 4.25: g_cmpttn_data : Input 73
Table 4.26: cmpttn_g_data : Output 74

4.8.5. Verification Plan 75
4.8.6. References and File Links 75
4.8.7. Revision Table 75

4.9. Database 76
4.9.1. Description 76
4.9.2. Design 76

Figure 4.20: Black Box of Database Block 77
Figure 4.21: Arduino + Application Code Flow Chart 78

4.9.3. General Validation 78
4.9.4. Interface Validation 79

Table 4.27. dtbs_g_rf : Output 80
Table 4.28. mcrcntrllr_dtbs_rf : Input 81

4.9.5. Verification Plan 82
4.9.6. References and File Links 82
4.9.7. Revision Table 83

5. System Verification Evidence 83
5.1. Universal Constraints 83

5.1.1. The system may not include a breadboard 83
Figure 5.1: Complete System (shows no breadboard) 83

5.1.2. The final system must contain a student designed PCB. 84
Figure 5.2: PCB Design Schematic 84
Figure 5.3: Fully Assembled PCB 84

5.1.3. All connections to PCBs must use connectors. 85
Figure 5.4: PCB with connectors 85

5.1.4. The system may be no more than 50% built from purchased 'modules.' 86
Table 5.1: Modules 86

5.1.5. All power supplies in the system must be at least 65% efficient. 86
5.2. Requirements 87

5.2.1. Battery 87
5.2.1.1. Project Partner Requirement: Rechargeable battery 87
5.2.1.2. Engineering Requirement: The system will operate for at least 1 week on a
single charge. 87
5.2.1.3. Testing Method: Test 87
5.2.1.4. Verification Process:
1) Detached from wall power 2) Put DMM inline with battery 3) turn on device 4) Find
average amount of current battery is drawing 5) Use to calculate how many hours
device will run on single charge
Pass Condition: Device will power for 7 or more days (168 hrs) 87
5.2.1.5. Testing Evidence: Average battery draw = 11.27mA (see image below).
2000mAh/11.27mA = 177.46 hrs > 168 hrs. Therefore the device will run for 1 week
on a single charge. 87
Figure 5.5: Battery Test Evidence (Verified 05/05/2023) 87

5.2.2. Device Labeling 87
5.2.2.1. Project Partner Requirement: Ability to mark a certain module as indoor or
outdoor 87
5.2.2.2. Engineering Requirement: The system will have the ability to name device
subsystems within the application. 87
5.2.2.3. Testing Method: Inspection 88
5.2.2.4. Verification Process:
1) Open the application and add device 2) Name device 3) Check that device name
is correct
Pass Condition: Device subsystems are correctly labeled in the application 88
5.2.2.5. Testing Evidence: 88
Figure 5.6: Device Labeling Screen Shots (Verified 05/05/2023) 88

5.2.3. Device Size 88
5.2.3.1. Project Partner Requirement: Module and Housing must fit within a 3”x3”x1”
space 88
5.2.3.2. Engineering Requirement: The system device subsystem will be no larger
than 3x3x1 inches of space. 88
5.2.3.3. Testing Method: Inspection 88
5.2.3.4. Verification Process:
Use a ruler to measure each side and check dimensions are smaller than 3x3x1

inch.
Pass Condition: Device size within listed specifications 88
5.2.3.5. Testing Evidence: 88
Figure 5.7: Device Size Evidence (05/11/23) 89

5.2.4. GUI 89
5.2.4.1. Project Partner Requirement: GUI interface 89
5.2.4.2. Engineering Requirement: The system will show the current temperature
data and at least 9 out of 10 users report they can see the current temperature
easily. 89
5.2.4.3. Testing Method: Demonstration 89
5.2.4.4. Verification Process:
1) Take a screenshot of the working home screen 2) Create Google form asking the
question “Is the temperature provided by the GUI easily readable?” 3) Confirm that 9
out of 10 users answer yes
Pass Condition: 90% of users answer yes to the question “Is the temperature
provided by the GUI easily readable?” 89
5.2.4.5. Testing Evidence: 89
Figure 5.8: GUI Form Pie Chart 89

5.2.5. Notifications 90
5.2.5.1. Project Partner Requirement: Notifies user when to open or close windows
90
5.2.5.2. Engineering Requirement: The system will notify users of requested change
in window status in a way that at least 9 out of 10 of users report was easy to
understand. 90
5.2.5.3. Testing Method: Demonstration 90
5.2.5.4. Verification Process:
1) Take a screenshot of open and closed notifications 2) Create a Google form with a
screenshot that asks "Are the window status notifications easy to understand?" 3)
Confirm that 9 out of 10 users answer yes
Pass Condition: 90% of users answer yes to the question "Are the window status
notifications easy to understand?" 90
5.2.5.5. Testing Evidence: 90
Figure 5.9: Notification Form Pie Chart 90

5.2.6. Sensors 91
5.2.6.1. Project Partner Requirement: Temperature and humidity sensors 91
5.2.6.2. Engineering Requirement: The system will gather temperature and humidity
data that is accurate within 5 degrees Celsius and 10% humidity. 91
5.2.6.3. Testing Method: Test 91
5.2.6.4. Verification Process:
1) Get an already accurate device and measure current temperature and humidity
values 2) Compare values gathered by the system to these collected numbers 91
5.2.6.5. Pass Condition: System values are within 5 degrees C and 10% humidity of
collected values 91
5.2.6.6. Testing Evidence: Values read from accurate device (Kestrel): 74.9 ℉ and
50.5 % humidity. Values read from our system: 73.9 ℉ and 45.9 % humidity. 91

Figure 5.10: Sensor Accuracy Evidence (05/10/2023) 91
5.2.7. Weather Proof Enclosure 91

5.2.7.1. Project Partner Requirement: Weatherproof (IPX4) container 91
5.2.7.2. Engineering Requirement: The system device subsystem will be
weatherproof to an IPX4 water resistance (water splashes from any direction). 91
5.2.7.3. Testing Method: Test 91
5.2.7.4. Verification Process:
1) Splash water on each device subsystem from all directions 2) Check that no
water is inside the enclosure
Pass Condition: No water is inside the enclosure 92
5.2.7.5. Testing Evidence: 92
Figure 5.11: Inside Enclousure (05/11/2023) 92

5.2.8. Wireless 92
5.2.8.1. Project Partner Requirement: Wireless communication to transmit data 92
5.2.8.2. Engineering Requirement: The system device subsystem will pair with the
application subsystem wirelessly 92
5.2.8.3. Testing Method: Test 92
5.2.8.4. Verification Process:
1) Turn on device subsystem 2) Open application and start pairing process 3) Check
the process completes wirelessly
Pass Condition: Device subsystem temperature and humidity data is viewed within
the application subsystem 92
5.2.8.5. Testing Evidence: 92

5.3. References and File Links 92
5.3.1. References (IEEE) 92
5.3.2. File Links 92

5.4. Revision Table 93
6. Project Closing 93

6.1. Future Recommendations 93
6.1.1. Technical Recommendations 93
6.1.2. Global Impact Recommendations 94
6.1.3. Teamwork Recommendations 94

6.2. Project Artifact Summary with Links 95
6.3. Presentation Materials 96

1. Overview

1.1. Executive Summary

This IOT sensor system will be designed to help homeowners make optimal use of their
windows. As the cost of electricity and natural gas increases, the effective use of windows to
regulate interior temperature can save users money. We will use hardware and software
solutions to build two monitoring modules for indoor and outdoor use. These sensors will take
weather data, such as temperature and humidity, and wirelessly transmit data to a mobile
application. The sensors will be battery powered, IPX4 water resistant, and fit within a 3x3x1
inch enclosure. In our application, an algorithm will use temperature and humidity data as well
as local weather to determine whether windows should be opened or closed before sending the
user a push notification. The application will also allow users to pair/unpair devices and visualize
sensor data.The project is currently in the building stage. We are now working towards putting
together our final design. Our next step will be to complete our final pcb, enclose the system,
and test to make sure pairing functionality, data transfer and notifications work as expected with
our application.

1.2. Team Contacts and Protocols

Table 1.1. Group Member Information and Roles

Name Phone Email Role

Jadon Roth 541-570-8932 dirksjad@oregonstate.edu Microcontroller and Sensor
Hardware

Blake Wiker 360-912-3488 wikerb@oregonstate.edu Power electronics and
enclosure

Yousif Albaker 541-908-6126 albakery@oregonstate.edu Microcontroller and system
backend programming

James Beans 541-340-5453 beansja@oregonstate.edu Application programming

mailto:dirksjad@oregonstate.edu
mailto:wikerb@oregonstate.edu
mailto:albakery@oregonstate.edu
mailto:beansja@oregonstate.edu

Table 1.2. Group Protocols

Topic Protocol Standard

Documentation Structure All information will be stored
on the Google Shared Drive.

All information will be
organized and accessible via
our central cloud service.

Information Distribution There will be an open
information flow.

Whenever documentation or
designs of any kind are
generated, they will be
posted to the central
information hub.

Communication We will primarily
communicate via Discord,
email, and phone.

Priority will take place in that
order.

On-Time Deliverables We will be having weekly
meetings as a team at the
beginning of the week where
we will discuss timelines and
tasks for the week.

Being that we have meetings
at the beginning of the week,
it is the perfect time to
discuss what will be done
during the week! We will
generate timelines and to-dos
for the following six days.

Task Management We will use a spreadsheet to
create a pseudo-Gantt chart.

We will generate an initial
project spreadsheet that
includes tasks and time to
complete. This spreadsheet
will be a living document, to
be edited as more tasks
arrive.

Work Quality Work will be completed with
complete effort and display
sufficient quality.

If work quality is not up to
group standards, members
will be asked to update
previous work.

Missing Meetings Group members will be
expected to come to every
scheduled meeting unless
notified in advance.

Members will let the group
know if they will miss a
meeting at least 24 hours in
advance.

Deadlines Deadlines will be created
during group meetings and
are expected to be met
unless the group is notified.

Deadlines are noted in the
timeline, members must
notify the group if deadline
will not be met multiple days
in advance.

Mentor Collaboration
We will be meeting weekly with our mentors Faiiq Waqar, Lyubo Gankov and Kiernan Canavan.
We will be meeting via zoom. Our communication with them will involve these meetings and our
group discord server. They can collaborate with us via this server, as well as through our Shared
Google Drive of which they are also a part of. All documentation and updates will be uploaded
to our Google Drive.

1.3. Gap Analysis

The reason for our project existence is that there will be no need to pay money for A/C when
there is a climate control sensor that provides the customer with the temperature in the house
and outside and that’s when the customer will have an option to either cool the inside of the
house by opening a window or warm it up incase outside temperature was warmer than inside.

We assume connecting the hardware would be an important part of the project and how smooth
it will run as well as the coding and software included and has to work simultaneously and in
sync in order to provide the best results possible on the GUI.The project will be usable by
everyone in the community and it should be affordable rather than expensive so all people can
use it by downloading an application from their mobile application store and creating an account
on the platform and connecting it to the probe and by that would get them up and running.

There are a few products already out there that are fairly similar to what we’re building here.
The first and most glaring example is your standard smart sensor/system. In essence, they take
in information from a series of nodes and talk with a central brain to make things happen. This is
almost exactly what we’re doing with the exception of actually making the things happen. We’ll
be able to draw ideas from the networking happening between these devices. Another product
that could lend ideas are rechargeable battery-powered electronics. Here we can draw on more
of the hardware side of things to give us a better idea of what a battery charging and power
regulating circuit looks like. Finally, things like Garmin’s smart watch applet may help to give us
a good example of a functional user interface built around hardware input.

1.4. Timeline/Proposed Timeline

Table 1.3. Timeline
Task Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Documentation Group Section 1
Section 2

Section 1+2

Partner Meetings Group Update 1 Update 2 Update 3

Design Impact
Assessment

Group Initial Assessment Final Assessment

Communication
Evaluation

Group Sign Up for Meeting Meeting
(20 min)

Hardware
Research

Jadon
+
James

Microcotrollers, sensors, power supply, circuit design

Software Research Yousif
+ Blake

Wireless connection, app GUI, data algorithm

Ordering
Components

Jadon
Order Preliminary
components

Order
PCBS/Com
ponents

Block Diagram and
Interfaces

Group Block
allocation
and
submission

Finalize interface for
block check offs

Microcontroller
Circuit Design

Jadon Begin
Circuit
Design

Draft Circuit Design

Finish
Circuit
Design

Final
Tweaks if
necessary

Redesign, Rebuild
and Retest

Power Electronics
Circuit Design

James
Begin
Circuit
Design

Draft Circuit Design
Finish
Circuit
Design

Final
Tweaks if
necessary

Redesign, Rebuild
and Retest

Microcontroller
Block Prototyping

Jadon Initial
Prototyping

Finish
Prototype

Power Electronics
Block Prototyping

James
Initial
Prototyping

Finish
Prototype

Microcontroller
Building and
Testing

Jadon PCB
Assembly

PCB
Testing

Power Electronics
Building and
Testing

James
PCB
Assembly

PCB
Testing

Node connection,
computation, data
storage
development

Blake Initial
prototyping

Cloud
storage and
Debugging

Block level
testing

GUI and
notification
development

Yousif Initial
prototyping

Data
visuals and
debugging

Block level
testing

Software system
level testing

Blake +
Yousif Combine software

experiences, implement into
app

Project System
Level testing and
assembly

Group Combine hardware
and software
experiences

Final project fixes Group Make sure project
works

Documentation
and presentation
preparation

Group Organize and prepare documents
and presentation

Finalize project
poster and
documentation

Group Make poster and finalize
presentation/documents

Knowledge
Transfer

Group Transfer
knowledge

1.5. References and File Links

1.5.1. References (IEEE)
[1] F. Waqar, “EECS Project Portal,” Sensor System for Self-Driven
In-Home Climate Control (ECE). [Online]. Available:
https://eecs.oregonstate.edu/capstone/submission/pages/viewSingleProje
ct.php?id=9vBa7B1brA8Osgxc. [Accessed: 14-Oct-2022].

1.5.2. File Links
Block Diagram (Draft): Here

1.6. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

03/08/23 Blake Updated Summary

01/20/23 Blake Updated Summary

11/15/22 Blake Updated executive summary and added protocols

11/15/22 Jadon Added extra examples to GAP assessment

11/8/22 Group Updated timeline

11/3/22 Blake Added Title page, table of contents, group info table, timeline

10/14/22 Jadon Added File and Link

10/11/22 Group Initial Revision

2. Impacts and Risk

2.1. Design Impact Statement

This section will discuss the impact of our product and design choices in four major categories:
Public Health, Safety, and Welfare impacts, Cultural and Social impacts, Environmental Impacts,
and Economic Impacts. Within these categories, we will address the harm of lithium-ion
batteries in our design, the negative impacts of a potential malfunction, and how the price can

https://eecs.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://eecs.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://drive.google.com/file/d/17BIgtIXCv7tFmUI_er9RVWxlawfiPpsn/view?usp=sharing

be a detriment to future users. We will also talk about potential solutions to these issues. Some,
like calculation malfunctions, we can potentially fix, while others, like battery use, we can
mitigate the issues but never fully remove due to the constraints of our design (small,
lightweight, mobile sensor).

In terms of public health impacts, our sensors will use outdoor air quality as one of the numbers
to determine if windows should be opened or closed. If our sensor malfunctions, for example not
receiving air quality data from the internet or forgetting to tell users to close their windows when
the outdoor air quality worsens, poor air could potentially enter a users home. This can be
dangerous for people inside the home, where a concentration of polluted air can lead to
shortness of breath, coughing, chest pain, nausea, fatigue and asthma attacks for those at risk
[1]. A possible solution to this problem could be to remind people to check air conditions if the
sensors are not receiving air quality data, or tell users to close their windows when calculations
cannot be made.

When looking at cultural and social impacts, accessibility of products plays a key role. Our
sensors need to be accessible to our users because homeowners come from all different
backgrounds and experiences. People who are disabled, or older people, are a few groups we
have to consider when designing our sensors. There are many smart home products that are
overly confusing to work and set up, especially for people that are not familiar with technology in
these groups. In order to create a more accessible product, we must work to cut costs and to
make sure it falls within the price range for everyday users [2]. We also must make sure that the
UI and information displayed is useful and easy to understand, especially for people that are
visually impaired [2].

While our sensor system will save users money and lessen the environmental impact of air
conditioning, the batteries we use can offset those effects. The batteries we use are lithium-ion
and we have to take into account where that lithium comes from and how that affects the
environment. The process of mining lithium has extreme side effects on the environment due to
the difficult nature and small yield received after refinement. One way that lithium is mined and
gathered is the use of evaporation ion pools of water which consumes over 2.2 million liters of
water for just 1 ton of lithium [3]. For our project as we do use lithium-ion batteries, we do
contribute to that environmental impact. However, at most, our battery will be 1 amp hour in size
which over a small quantity of production of our project, is small compared to other sources of
energy. We can minimize our energy usage by checking data sheets and finding modules with
low energy consumption.

Finally, economic impacts cannot be ignored. Our sensors use many chips and modules to allow
our team to fulfill all our requirements. Due to the global chip shortage, these components are
rapidly increasing in price and are limited in availability [4]. With the supply not matching the
demand for these parts, our sensors could potentially be 2 or 3 times more expensive than just
a year ago [4]. A sensor that costs between $50 and $100 to manufacture (waterproof
temperature and humidity sensors being the most expensive) could potentially offset any cost
savings from a user's heat or A/C bill.

2.2. Risk

Table 2.1. Risk Assessment and Action Plans

Risk ID Risk Description Risk category Risk
probability

Risk
impact

Performance indicator Action Plan

R1 Incompatible
interface

Technical H H Sensor Data is not
displayed in GUI
application

Research compatibility
between GUI and
storage system, check
code, break down into
code sections and
debug

R2 Vendor delay Timeline M M Behind Schedule Find local replacements
or another vendor with
faster shipping

R3 Parts beyond
budget

Cost H H Parts prices are
increasing due to the
demand and low
supply globally.

Find another vendor
that provides similar
parts with cheaper
prices. Look into
datasheets for cheaper
parts to find similar
specifications.

R4 LiPo Battery
catches fire

Safety L H Fire Locate fire extinguisher
and call 911, mitigate
fire spread

R5 Team members
need to take

Organizational M M Team members sends
notice of absence

Gather time sensitive
material team members

time for
personal
matters

were working on, list
the work that had to be
completed, redistribute
work among the team.

R6 Code Errors Technical H M Gui bugs and errors,
showing incorrect data

Use debug tools, find
problem, update code
in sections, debug the
problem

R7 Sensor error Safety L M Probe malfunctions
and sends notification
in the wrong time

Test the sensors and
probe multiple times in
order to get accurate
data outputs, if issues
persist, order new
sensors.

R8 Enclosure
Failure

Technical L H Moisture touches our
electronics

Test before putting
electronics in the
elements, find failpoint,
redesign enclosure

R9 Electronics
Failure

Organizational L H Electronic components
fail or malfunction

Order an extra part of
the component that
might malfunction
easily.

2.3. References and File Links

2.3.1. References (IEEE)

[1] “Air Quality and Health,” Minnesota Pollution Control Agency. [Online]. Available:
https://www.pca.state.mn.us/air-water-land-climate/air-quality-and-health.

[2] M. Cannistra, “Fully accessible guide to smart home tech for the disabled and
elderly,” ZDNET, 07-Sep-2021. [Online]. Available:
https://www.zdnet.com/home-and-office/smart-home/fully-accessible-guide-to-sm
art-home-tech-for-the-disabled-and-elderly/.

[3] M. Campbell, “South America's 'lithium fields' reveal the dark side of Electric
Cars,” euronews, 01-November-2022. [Online]. Available:
https://www.euronews.com/green/2022/02/01/south-america-s-lithium-fields-reve
al-the-dark-side-of-our-electric-future.

[4] G. Scott, “Why the chips are down: Explaining the global chip shortage: Jabil,”
Jabil.com. [Online]. Available:
https://www.jabil.com/blog/global-chip-shortages.html. [Accessed: 01-Nov-2022].

2.3.2. File Links
Risk workshop in Class: 20221021_114106.jpg

2.4. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

04/25/23 Blake Added impact statement

11/15/22 Blake Updated action plans

11/4/22 Yousif and
Blake

Initial table creation

https://drive.google.com/file/d/15u41OGnm9rpBoq27LVKFQjxnB8R5GG6B/view?usp=share_link
https://www.pca.state.mn.us/air-water-land-climate/air-quality-and-health
https://www.zdnet.com/home-and-office/smart-home/fully-accessible-guide-to-smart-home-tech-for-the-disabled-and-elderly/
https://www.zdnet.com/home-and-office/smart-home/fully-accessible-guide-to-smart-home-tech-for-the-disabled-and-elderly/
https://www.euronews.com/green/2022/02/01/south-america-s-lithium-fields-reveal-the-dark-side-of-our-electric-future
https://www.euronews.com/green/2022/02/01/south-america-s-lithium-fields-reveal-the-dark-side-of-our-electric-future
https://www.jabil.com/blog/global-chip-shortages.html

3. Top-Level Architecture

3.1. Block Diagram

This section details the black box diagram and the system block diagram for the sensor
system. Figure 3.1 shows the black box diagram with four system input and two system
outputs. Figure 3.2 is the main block diagram with block and interface names.

Figure 3.1: System Black Box Diagram

Figure 3.2: System Block Diagram

3.2. Block Descriptions

This section contains a table with the block descriptions for each block in our system. Block descriptions are a quick overview of what
the block contains and how it functions within the whole system.

Table 3.1: Block Descriptions

Name Description

GUI

Champion:
Yousif Albaker

The GUI block is the main application code block for the sensor system and allows our user add sensors and visualize
sensor data. The GUI block uses android studio to build the climate control application in the Java programming language.
The GUI consists of three main pages, also known as activities, in android studio. The main activity consist of a text view,
which contains text relating to window status, a recycler view, which contains each sensor node connected to the
application, and a button to add new sensors. Each sensor node on the main activity also displays the sensor's name and
updated temperature and humidity data. This data is updated each time the activity is opened by querying the cloud
database in a background data thread and putting the most current values into a local database called android room. Each
element on the main activity can also trigger new windows for the user to navigate. When the user taps on the window
status text view, a popup window is opened which allows the user to input their desired interior temperature for their house.
Tapping on a sensor node opens the node info activity where 24 hr graphs for temperature and humidity are displayed for
the specific node. Clicking the add node button opens the add node activity where sensors can be provisioned to the local
wifi network and paired to the application. Information like wifi credentials and sensor name are sent to the ESP32
microcontroller from over bluetooth from this activity. The GUI gathers all of its input sensor data and information from the
cloud database. Querying this database in the background allows the GUI to be continually updated and gather all the
necessary data (like time, name and sensor data) for graphs and calculations. Two major blocks are attached to the GUI,
computation block and the notification block. The computation block has two way communication with the GUI, where
sensor and desired temperature data is send to the block and the calculation results and received. The GUI also outputs
notification information to the notification block to make sure the user receives the proper notification when the windows
need to be opened.

Notifications
Champion:
Yousif Albaker

The notification block allows the user to be notified when their windows need to be opened or closed. The notification block
will take in String and integer data values and output push notification to the user using Android system notification. The
input integer will correspond to the type notification sent and the string will be the content of the notification. For example,
when the block is passed notification integer 1, the open window notification is built using the string "Open Window". The
notification is then sent to the notification manager where the application notification channel displays the message for the
use. There will be three output notification states, no change, open window, and close window. When the user taps on a
notification, they are brought to the application home page.

Power
Electronics
Champion:
James Beans

This block consists of the design of a battery charging circuit and the power managing design for the microcontroller and the
power for the charging circuit. This would mean an output of 5V for a microcontroller, and output of 3.3V for a chip, a
charging circuit for a 3.7V battery, and the ability to receive 5V charging power.

Enclosure
Champion:
James Beans

This block is for the enclosure for the device. The enclosure will house all the components and will be IPX4 weatherproof. It
will have to be within a 3" x 3" x 1" size constraint. This enclosure will be a custom 3D printed enclosure in PLA material.

Database
Champion: Blake
Wiker

The database block allows our system to collect, store, and display sensor data over a longer time period. Temperature and
humidity data from our sensor comes into the block, where it is packaged by the microcontroller using relevant tags and
identifying information, such as username and node name (indoor/outdoor). This packaged data is then sent to our time
series cloud database, Influx DB, over WIFI where data is stored with a timestamp the moment it arrives. I chose Influx DB
due to its wide range of applications and code examples for both Arduino (ESP32) and Java (Android application) as well as
automatic timestamp collection component, which is important for our project. In the database, different accounts
(usernames) will be tagged within a single bucket of data and the sensor name will be tagged underneath the user for
further organization. Once the data is stored, our Android application will query the database using these tags to collect
temperature and humidity data as well as the timestamp from specific sensors. This data will be used in our GUI to create
time graphs for all the sensors attached to a user. One of our project partner requirements was the ability to visualize
sensor data in our application, and the database block allow the creation of this time-based graph with time on the x-axis
and temp/hmd data on the y-axis. We will also use the temperature and humidity values in the computation block to
determine when the windows need to be opened or closed. This was another major requirement of the system (window
notifications) and the database block helps accomplish this by gathering and sending critical data for the calculations.
Finally, one of our system requirements is the ability to show current temperature data, and the database block is needed to
update the user interface with the most updated and last time stamped data point.

Computation
Champion: Blake
Wiker

The computation block will take in data from the indoor and outdoor temperature sensors to determine if windows need to
be opened or closed. The user will be able to set a desired temperature using the application. If the indoor temperature
rises above the desired temp and the outdoor temperature is below the indoor temp, the block will tell the GUI that windows
need to be opened. Humidity will also be used in the computation block by integrating into a dew point calculation. This will
be used to determine if the outdoor air is too moisture heavy compared to the indoor moisture. If the outdoor dew point is
close to the indoor dew point, the windows can be opened if the temperatures are correct. The calculation block also
determines if a notification needs to be sent using the previous window state. If the window state changes, the block will
output the corresponding notification integer which is stored and then used by the notification block. The window status
string is based on the window calculation and is used within the UI to clearly indicate the window status to the user.

Microcontroller
Champion:
Jadon Roth

This block is the central node for the hardware section on this system. It takes in inputs from the sensors and outputs to the
communication block based off the code running on the microcontroller. This device is powered by the power electronics.
THis block will consist of a homebrewed PCB, including a daughtered ESP.

Microcontroller
Code
Champion:
Jadon Roth

The microcontroller code block lives on the ESP32 microcontroller. The code handles bluetooth and wifi connections, gets
and stores temperature, humidity and time data, and write datapoints to the cloud database. Wifi information is collected
using a bluetooth provisioning library and once the microcontroller is connected to the local network, time data is synced to
the device. In our loop, the temperature and humidity sensor data as well as current time data is collected and stored into a
FIFO queue every minute. Every half minute, the loop attempts to upload data to the database. If the queue is empty, the
write is not executed.

Sensors
Champion:
Jadon Roth

The sensor block takes in an external data stream from the outside world and outputs this data to the microcontroller. These
sensors will communicate with the microcontroller via some protocol, most likely I2C. They will receive power from the
battery via the microcontroller.

3.3. Interface Definitions

This section contains a table with all the interfaces in our design. Each interface has a name
and properties contained in the interface with the type of property listed before the explanation.

Table 3.2: Interface Definitions

Name Properties

otsd_g_usrin
● Other: wifi information (struct) ex. username:

mywifi, pw: 1234
● Other: desired temp (float) ex. 71
● Other: sensor name (string) ex. Indoor

otsd_snsrs_envin
● Humidity: Space Dependent
● Temperature (Absolute): Space Dependent

otsd_pwr_lctrncs_dcpwr
● Inominal: 150mA
● Ipeak: 500mA
● Other: 20W
● Vnominal: 5V

otsd_enclsr_envin
● Other: Size: 3" x 3" x 1"
● Water: IPX4 (Light splash and light spray)

g_otsd_usrout ● Other: Sensor Data (Graph) ex. 24 hr line graphs
for temp and hmd

● Other:Window Status (Text Box) ex. Closed
● Other: Sensor Data (Node) ex. Indoor, temp: 72,

hmd: 45.6

g_ntfctns_data
● Messages: closed notification (string) ex. Close

Window
● Messages: notification type (int) ex. 0, 1, 2
● Messages: open notification (string) ex. Open

Window

g_cmpttn_data
● Messages: outdoor hmd (double) ex. 75.8
● Messages: indoor temp (double) ex. 75.2
● Messages: desired temp (float) ex. 71
● Messages: outdoor temp (double) ex. 68.9
● Messages: indoor hmd (double) ex. 57.3

g_mcrcntrllr_rf
● Messages: wifi information (struct) ex. username:

mywifi, pw: 1234
● Messages: sensor name (string) ex. Indoor
● Messages: reset (bool) ex. false

ntfctns_otsd_usrout ● Other: closed notification (android system
notification)

● Other: no change (android system notification)
● Other: open notification (android system

notification)

snsrs_mcrcntrllr_comm ● Messages: Humidity
● Messages: Temperature
● Protocol: I2C

pwr_lctrncs_snsrs_dcpwr
● Inominal: 3mA
● Ipeak: 5A
● Vmax: 5V
● Vmin: 3V
● Vnominal: 3.3V

pwr_lctrncs_mcrcntrllr_dcpwr
● Inominal: 30mA
● Ipeak: 1.5A
● Vmax: 5.1V
● Vmin: 4.6V
● Vnominal: 5V

enclsr_pwr_lctrncs_mech
● Fasteners: 3mm Mounting Holes (at least 2)
● Other: USB C

dtbs_g_rf
● Messages: tag (string) ex. Indoor
● Messages: humidity (double) ex. 80.5
● Messages: time stamp ex. 2023-1- 12T20:36:45
● Messages: temperature (double) ex. 72.1

cmpttn_g_data ● Messages: notification type (int) ex. 0 (0 is none, 1
is open window, 2 is close window)

● Messages: window status (boolean) ex. false (true
is open, false is closed)

● Messages: window string (String) ex. "Closed"

mcrcntrllr_dtbs_rf
● Messages: humidity (double) ex 80.5
● Messages: temperature (double) ex. 72.1
● Messages: tag (string) ex. Indoor

mcrcntrllr_mcrcntrllr_cd_comm
● Messages: Time
● Messages: Humidity
● Messages:Wifi information ex. username: mywifi,

pw: 1234
● Messages: Temperature
● Messages: Node name ex. Indoor

mcrcntrllr_cd_mcrcntrllr_comm
● Messages: Time
● Messages: Temperature
● Messages: Node name
● Messages: Humidity

3.4. References and File Links

3.4.1. References (IEEE)

3.4.2. File Links

3.5. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

03/10/23 Blake Initial Creation

4. Block Validations

4.1. GUI

4.1.1. Description

The GUI block is the main application code block for the sensor system and allows our
user add sensors and visualize sensor data. The GUI block uses android studio to build
the climate control application in the Java programming language. The GUI consists of
three main pages, also known as activities, in android studio. The main activity consists
of a text view, which contains text relating to window status, a recycler view, which
contains each sensor node connected to the application, and a button to add new
sensors. Each sensor node on the main activity also displays the sensor's name and
updated temperature and humidity data. This data is updated each time the activity is
opened by querying the cloud database in a background data thread and putting the
most current values into a local database called android room.
Each element on the main activity can also trigger new windows for the user to navigate.
When the user taps on the window status text view, a popup window is opened which
allows the user to input their desired interior temperature for their house. Tapping on a
sensor node opens the node info activity where 24 hr graphs for temperature and
humidity are displayed for the specific node. Clicking the add node button opens the add
node activity where sensors can be provisioned to the local wifi network and paired to
the application. Information like wifi credentials and sensor name are sent to the ESP32
microcontroller from over bluetooth from this activity.
The GUI gathers all of its input sensor data and information from the cloud database.
Querying this database in the background allows the GUI to be continually updated and
gather all the necessary data (like time, name and sensor data) for graphs and
calculations. Two major blocks are attached to the GUI, computation block and the
notification block. The computation block has two way communication with the GUI,
where sensor and desired temperature data is sent to the block and the calculation
results and received. The GUI also outputs notification information to the notification
block to make sure the user receives the proper notification when the windows need to
be opened.

4.1.2. Design

This section includes the black box diagram of the GUI block as well as a flow chart
describing the code progression within the block. Figure 4.1, the black box diagram,
shows that the block has three inputs (otsd_g_usrin, dtbs_g_rf, cmpttn_g_data), and four
outputs (g_otsd_usrout, g_ntfctns_data, g_cmpttn_data, g_mcrcntrllr_rf). Input consists
of user input to the GUI, data input from the cloud database, and computation data from
the computation data block. The GUI block outputs to the user in the form of graphical
sensor data, gives data to the notification block to send notifications, gives data to the

computation block from the database to make calculations, and sends node data from
the user to the microcontroller.

Figure 4.1: GUI Black Box Diagram

The GUI block is made of three main pages or activities: the main activity, the new node
activity, and the node info activity. Each activity consists of actions that are executed on
creation, actions that happen on resume, and varying functions that run different data
transfers and connections between activities and databases within the application. On
the main activity, users will find the window status on the top of the page and the
connected nodes underneath in list form with the node name, current temperature data
and current humidity data. On the bottom right of the main page is a plus button which
opens the new node activity when pressed. In the new node activity, users will be asked
to provide a node name and connect the sensor device to their local wifi network using
bluetooth network provisioning. A connected sensor will be displayed in the main activity
and its data will be continuously updated using a background worker activity.
The application also consists of a node info activity. When the user clicks on a sensor in
the main activity, the node info activity page is opened. There the user will see name,
updated temperature and humidity data as well as additional 24 hour graphical
temperature and humidity data. This data is stored in the cloud database and queried
when the page opens to populate the graphs. The last major part of the GUI is the
background worker activity, which is where all the data queries, local database updates,
and calculations are handled for the GUI. Figure 4.2 shown below is a basic overview of
the GUI code and how activities and its background worker are interconnected.

Figure 4.2: GUI Flow Chart

4.1.3. General Validation
The reason why this block is important to the system is that it is the main part of the
software of the entire level system. It pulls cloud data from the database block and uses
it to update important UI elements for the user. It allows users to get data visualization
for each sensor and each data point created by the sensor. It allows pairing and
unpairing of sensors in the application. These are very important requirements of our
project partners [1].

The GUI interacts with almost all blocks of the project, for example the notification
block is another separate block but is interacting with the GUI constantly in order to
notify users about their window status. It is the GUI that is in charge of organizing and
providing the block with the necessary information. The GUI is also key to the
computation block and provides indoor and outdoor temperature and humidity data as
well as collects the desired temperature from the user for the calculation. It also feeds
the calculation results to the notification block seamlessly to provide a great user
experience. In the end, the GUI block is necessary to display information to the user
and transfer data between code blocks in the system [2].

The GUI also interacts with the microcontroller by sending node name and wifi
information over bluetooth. When the sensor needs to be unpaired, the GUI will send
the sensor a data packet telling the system to clear its flash and restart. This is another
project partner requirement which makes it very important to the system [1].

This android application will work for the system due to the multitude of android java
libraries and documentation available. This being our first app, we felt it was important
to start with a platform that was accessible unlike iOS where many libraries are closed
off and unusable [3].

4.1.4. Interface Validation

This section contains the two interfaces and their properties. The tables below talk about
each property value and why the design details meet each property.

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Table 4.1: otsd_g_usrin : Input

Other: wifi information
(struct) ex. username:
mywifi, pw: 1234

Wifi credentials are presented to
the microcontroller in the form of
an ssid and password

The GUI will allow the user to
enter this information before
sending to the microcontroller

Other: desired temp
(float) ex. 71

The desired temp is stored in
local data storage as a float,
easy to read for the user

The block pulls up a popup
window to allow the user to enter
the temperature

Other: sensor name
(string) ex. Indoor

The sensor name is stored in
local data storage as a string,

The block allows the user to enter
the node name when connecting

user need to know the name the sensor to the network

Table 4.2: g_otsd_usrout : Output

Other: Sensor Data
(Graph) ex. 24 hr line
graphs for temp and
hmd

Graphical data is easily
represented and is easy to view
by the user

The GUI will query all datapoint
and use an android graphing
library to display the points to the
user

Other: Window Status
(Text Box) ex. Closed

The window status text box is
present to let the user know the
current window status at all times

The GUI will query data to update
window status regularly, along
with using a string to update the
UI element for the user

Other: Sensor Data
(Node) ex. Indoor,
temp: 72, hmd: 45.6

Sensor data needs to be easy to
read for the user, string and
floats with one decimal provide
an easy to read interface

The block will displayed updated
data for the user on the main
activity every 15 min or on
resumption of the activity

Table 4.3: g_ntfctns_data : Output

Messages: closed
notification (string)
ex. Close Window

The closed notification message
is this value to make sure
notification are clear for the user

The notification builder take in
string data to set the text of the
notification

Messages:
notification type (int)
ex. 0, 1, 2

The notification integer needs
three states (no change, open,
closed) to pick the proper
notification type

The notification int is used to build
the proper notification, the design
details will meet the property

Messages: open
notification (string)
ex. Open Window

The open notification message is
this value to make sure the user
clearly understands the window
status

The notification builder take in
string data to set the text of the
notification

Table 4.4: g_cmpttn_data : Output

Messages: outdoor
hmd (double) ex. 75.8

Outdoor humidity is a double in
order to calculate the most
accurate information for the user

When performing calculations in
Java, the numbers involved must
be double or float values or else
the final result may be truncated,
giving inaccurate readings.

Messages: indoor
temp (double) ex.
75.2

Indoor temperature is a double in
order to calculate the most
accurate information for the user

When performing calculations in
Java, the numbers involved must
be double or float values or else
the final result may be truncated,
giving inaccurate readings.

Messages: desired
temp (float) ex. 71

Desired temperature is this value
to make it easy for the user to
enter the value. The value is a
float to aid in future calculations.

The block sends the temperature
to check if the interior temperature
gets too high. Calculations utilizes
the float to perform accurate
results.

Messages: outdoor
temp (double) ex.
68.9

Outdoor temperature is a double
in order to calculate the most
accurate information for the user

When performing calculations in
Java, the numbers involved must
be double or float values or else
the final result may be truncated,
giving inaccurate readings.

Messages: indoor
hmd (double) ex. 57.3

Indoor humidity is a double in
order to calculate the most
accurate information for the user

When performing calculations in
Java, the numbers involved must
be double or float values or else
the final result may be truncated,
giving inaccurate readings.

Table 4.5: g_mcrcntrllr_rf : Output

Messages: wifi
information (struct)
ex. username: mywifi,
pw: 1234

Wifi credentials are presented to
the microcontroller in the form of
an ssid and password

The GUI will allow the user to
enter this information before
sending to the microcontroller

Messages: sensor
name (string) ex.
Indoor

The sensor name is stored in
local data storage as a string,
user need to know the name

The block allows the user to enter
the node name when connecting
the sensor to the network

Messages: reset
(bool) ex. false

A boolean is used for resetting
the sensor to limit the amount of
data sent

The GUI will send the boolean
when the user deletes the sensor
from the application

Table 4.6: dtbs_g_rf : Input

Messages: temperature
(float) ex. 72.1

The temperature and humidity data
were chosen to be float based for
our sensor accuracy. Rounding to
the tenths place helps users to
visualize the data easily within our
user interface. We also want the
data to be easily to graph and
visualize, and this form helps us
achieve that goal.

This data format is easiest to write
and query from the database. While
the database can handle all forms
of data, numbers with only a few
decimal places are best.

Messages: tag (string)
ex. user1, indoor

Tags for the data were chosen
because we needed to separate
data by sensor and by account.
For Influx DB, tags are normally
strings for ease of use when
querying the output.

This meets the standards for Influx
DB, tags must be string data. I also
know it is easiest to use tags to
display cleanly to the user.

Messages: time stamp
ex.
2023-1-12T20:36:45

The time stamp was chosen for the
output due to the requirement to
visualize data in our application.
This format is what comes
standard with Influx DB and can be
easily put into a Date object for
graph creation.

Our design specifies time as a key
data value for our GUI. Using this
interface value from the time series
database is best for our purposes of
data visualization and using time as
a component in our window open
and close calculations.

Messages: humidity
(float) ex. 80.5

The humidity data were chosen to
be float based for our sensor
accuracy. Rounding to the tenths

This data format is easiest to write
and query from the database. While
the database can handle all forms

place helps users to visualize the
data easily within our user
interface. We also want the data to
be easily to graph and visualize,
and this form helps us achieve that
goal.

of data, numbers with only a few
decimal places are best.

Table 4.7: cmpttn_g_data : Input

Messages:
notification type (int)
ex. 0 (0 is none, 1 is
open window, 2 is
close window)

The notification type integer is
used to determine the notification
sent to the user. An int is used
since three states are needed for
window state: open, close, or no
change.

The design of the block sets the
integer to 0 unless a state is
changed, therefore it meets the
expectations for this property.

Messages: window
status (boolean) ex.
false (true is open,
false is closed)

The window status boolean is
used since the current window
status just needs two states,
opened or closed.

The design of this block sets the
boolean true if all the sensor
specifications are met or defaults
to false. The design meets
expectations for the window
status of the system.

Messages: window
string (String) ex.
"Closed"

The window string changes
along with the window status
boolean, it works the same way
but allows the UI to easily
update.

The design of this block for this
property is the same as the
boolean, therefore it continues to
meet expectations.

4.1.5. Verification Plan

This section talks about the verification plan for the GUI block. We can break down the
verification into activities to make the input and output comparisons easier.

Main Activity
1. Open main activity
2. Check that sensor data and window status updates
3. Check tapping plus opens new node activity
4. Check tapping sensor opens node info activity

New Node activity
1. Enter sensor name
2. Connect and send wifi + name to sensor
3. Confirm that data is being received on the Main activity from the sensor
4. Check that deleting node sends boolean to sensor

Node info Activity
1. Check that updated name, temp, and hmd data is properly displayed
2. Check that graphs are updated and display correct values and times

Background Worker
1. Check that database values are being queried and stored correctly
2. Check that proper indoor and outdoor values are being sent to the computation block
3. Check that notification and status information is being revived from the computation
clock
4. Check that the notification information is being sent to the notification block

4.1.6. References and File Links

[1] F. Waqar, “Sensor System for Self-Driven In-Home Climate Control (ECE),” EECS
Project Portal, Sep-2022. [Online]. Available:
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSinglePro
ject.php?id=9vBa7B1brA8Osgxc.

[2] K. Johnson, “Gui – what is it and why is it important?,” GUI – What Is It and Why Is It
Important?, 05-Jan-2023. [Online]. Available:
https://www.wikijob.co.uk/industry/it-technology/what-is-a-gui.

[3] “How To Write Your First Program in Java | DigitalOcean,” www.digitalocean.com.
https://www.digitalocean.com/community/tutorials/how-to-write-your-first-program-in-j
ava

4.1.7. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

04/12/23 Blake Wiker Updated Description and Design

2/10/2023 Yousif Albaker Black box and flow chart.

https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://www.wikijob.co.uk/industry/it-technology/what-is-a-gui
https://www.digitalocean.com/community/tutorials/how-to-write-your-first-program-in-java
https://www.digitalocean.com/community/tutorials/how-to-write-your-first-program-in-java

02/08/2023 Yousif Albaker Grammar and interfaces.

01/20/2023 Yousif Albaker first draft submission

4.2. Notifications

4.2.1. Description

The notification block allows the user to be notified when their windows need to be
opened or closed. The notification block will take in String and integer data values and
output push notification to the user using Android system notification. The input integer
will correspond to the type notification sent and the string will be the content of the
notification. For example, when the block is passed notification integer 1, the open
window notification is built using the string "Open Window". The notification is then sent
to the notification manager where the application notification channel displays the
message for the user. There will be three output notification states, no change, open
window, and close window. When the user taps on a notification, they are brought to the
application home page.

4.2.2. Design

This section includes the black box diagram of the notification block as well as a flow
chart describing the code progression within the block. Figure 4.3, the black box
diagram, shows that the block has one input, g_ntfctns_data, and one output,
ntfctns_otsd_usrout. Input consists of an int value which determines the notification type,
and two strings which fill the open and closed notifications. The notification block outputs
three notification states: no change, open notification, and closed notification.

Figure 4.3: Notification Black Box Diagram

Figure 4.4 below showcases the flow chart describing the layout of the notification block.
At the top, the notification int is called from storage. A notification channel is set up for
the application. This channel is given an ID and specified “High Importance” in order for
the user to see the notification in a timely manner. After channel creation, a notification
manager is opened, which is where specific notifications are called to be built and sent. If
the notification integer is a 1, then the open notification string is put in the notification
and it is sent to the user. If the notification integer is a 2, then the closed notification
string is put in the notification and it is sent to the user. If the notification integer is a 0,
then no notification needs to be sent since the window status has not changed.

Figure 4.4: Notification Flow Chart

4.2.3. General Validation

The notification block is necessary for our project due to our project partner requirements
and the nature of our project. The main goal of our system is to notify a user when their
windows need to be opened or closed [1]. In order to accomplish this, we must have a
code block that sends and displays the window status information to the user based on
the data provided by our sensors. The notification block accomplishes this by creating a
notification channel for the application and consistently sending notification to that
channel whenever the window status changes. The notification block is an integral and
necessary part of the system to accomplish our goals.

This block will work for our system because it has been proven using android studio
examples from the android development website. In the example, basic notifications are
created using android notification channels, builders, and managers [2]. Different
function calls like set content title or set content text are used to change the type of
notification using the strings provided to the block. Managers use the function “notify” to
send the notification to the android system where the user can see it.

We could also have implemented this using text notification from the application. A
user's phone number could have been entered to receive the notifications. This process
was set aside in favor of the process above since it could prove more cumbersome than
implementing a system push notification to the testing device and provide less
information than the android system can provide if needed.

4.2.4. Interface Validation

This section contains the two interfaces and their properties. The tables below talk about
each property value and why the design details meet each property.

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Table 4.8: g_ntfctns_data : Input

Messages: closed
notification (string)
ex. Close Window

The closed notification message
is this value to make sure the
user clearly understands the
window status

The notification builder take in
string data to set the text of the
notification

Messages:
notification type (int)
ex. 0, 1, 2

The notification integer needs
three states (no change, open,
closed) to pick the proper
notification type

The notification int is used to build
the proper notification, the design
details will meet the property

Messages: open
notification (string)
ex. Open Window

The open notification message is
this value to make sure the user
clearly understands the window
status

The notification builder take in
string data to set the text of the
notification

Table 4.9: ntfctns_otsd_usrout : Output

Other: closed
notification (android
system notification)

Android system notifications are
the output of the notification
manager notify function

The notification block packages
notifications using notification
builder for the notification
manager, which meets the
property expectations.

Other: no change
(android system
notification)

Android system notifications are
the output of the notification
manager notify function

The notification block packages
notifications using notification
builder for the notification
manager, which meets the
property expectations.

Other: open
notification (android
system notification)

Android system notifications are
the output of the notification
manager notify function

The notification block packages
notifications using notification
builder for the notification
manager, which meets the
property expectations.

4.2.5. Verification Plan

This section details the verification plan for the notifications block. The plan will go
through the process of verifying that the input interfaces produce the output interfaces.
1. Open Android studio and build the project. Once the project has been built, open the
background worker class.
2. Find the notification integer and set the value to 0.
3. Open application on device and show that no notification is sent when the main
activity is refreshed.
4. Open the background worker class and set the integer value to 1.
5. Check to make sure the open string is updated in the notification builder function.
6. Open the application and show that the open notification is displayed.
7. Open the background worker class and set the integer value to 2.
8. Check to make sure the closed string is updated in the notification builder function.
9. Open the application and show that the closed notification is displayed.

4.2.6. References and File Links

[1] F. Waqar, “Sensor System for Self-Driven In-Home Climate Control (ECE),” EECS
Project Portal, Sep-2022. [Online]. Available:
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSinglePro
ject.php?id=9vBa7B1brA8Osgxc.

https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc

[2] “Create a notification: Android developers,” Android Developers. [Online]. Available:
https://developer.android.com/develop/ui/views/notifications/build-notification

4.2.7. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

03/12/2023 Blake Updated Design and General Validation

03/08/2023 Yousif Initial Creation

4.3. Enclosure

4.3.1. Description

The enclosure block in our project consists of a water resistant container that houses our
device which consists of a battery, PCB, and sensor.

4.3.2. Design

In this section, we will explain the overall design of the block consisting of the black box
diagram for the input and output, and our preliminary design for the enclosure.

If we take a look at the picture of the black box diagram in Figure 4.5, we can see that
our block consists of 1 input and 1 output. The input would be “otsd_enclsr_envin” which
is from the environment to the enclosure such as water splashes and mist. This is our
input for environment protection which would be to withstand IPX4. Our output would be
“enclsr_pwr_lctmcs_mech” which describes our case mounting inside for our PCB as
well as the ability to install a USB C connector that goes through the case (outside to
inside) which will allow the ability to provide power to the device via a USB C charging
cable. In Figure 4.6, is our design developed on AutoCAD which shows a 2 piece
enclosure which would be a top and bottom. The 2 pieces are almost identical besides
one piece having a port hole for the USB C connection. This enclosure has a hole for the
sensor to be mounted externally beside the enclosure. Each piece also has a groove on
the touching surfaces to provide a space for an o-ring to make the enclosure IPX4.

https://developer.android.com/develop/ui/views/notifications/build-notification

Figure 4.5: Black box diagram displaying our inputs and outputs

Figure 4.6: Design of the enclosure block

4.3.3. General Validation

The main purpose of this block is to house all components of our device in an enclosure
that is of limited size and of IPX4 water resistant. This enclosure is there to provide
protection for all components of our system. The items that mount inside the enclosure
would be a LI-PO rechargeable battery, a custom PCB for the power electronics and
microcontroller, as well as serve as a mounting apparatus for our external temperature
and humidity sensor which mounts alongside our enclosure. The enclosure was
designed to to perfectly fit within our size constraint of 3” X 3” X 1” with a cut out to allow
room for our external sensor to fit while still being within our size constraint.

As our device also has a rechargeable battery, in order to be able to charge that battery ,
a USB C connection hole was made in the side of the enclosure where A USB C
receptacle will be located to allow the drive to be charged without having to take apart
the enclosure.

Another major part of the enclosure design would be its ability to withstand water with an
IPX4 rating. This is to allow the device to be mounted outdoors in lightly wet condition
and provide protection to the water sensitive components inside. Our device has a
groove on both side of the enclosure to allow a round rubber o-ring to be placed inside
the groove that way when both sides of the enclosure are connected, a tight seal is
formed which will prevent and sprays of water or light splashes of water to get inside the
enclosure and prevent damage to the internal components..

One cause of concern for our enclosure would be the ability to dissipate any heat formed
inside the enclosure. We do not anticipate any major heat to be created but, with a LI-PO
battery being charged and several voltage regulators inside, the potential for an increase
in temperature is a possibility. And with an almost sealed enclosure, there are very few
areas for air and heat to escape outside the enclosure.

4.3.4. Interface Validation

Interface
Property

Why is this interface
property this value?

Why do you know that your design
details for this block

above meet or exceed each property?

Table 4.10: otsd_enclsr_envin: Input

Size 3” X 3”
X 1”

This is the size that our
block can have as its
maximum. Meaning all
parts including the
enclosure must fit within
this size.

Our design will fit inside this size constraint
as the enclosure itself is designed just under
the max size and all of our components fit
within the enclosure.

IPX4 (light
splash and
light spray)

This interface property
explained that the
enclosure must provide a
water resistant protection
of IPX4.

Our design meets the interface as the
enclosure was designed to have water
repelling factors such as a rubber gasket to
prevent water seepage.

Table 4.11: enclsr_pwr_lctmcs_mech: output

USB C This interface explained
that the enclosure must
have the ability to accept
a cable of USB C size.

Our design meets this property as on the
side of our enclosure is a USB C connector
hole design to snuggly fit a USB C cable.

3mm
mounting
Holes: at
least 2)

This interface property
explains that within the
enclosure, there must be
at least two 3 mm
mounting holes to mount
the PCb and or enclosure
parts together.

Our design meets this property as our PCB
was designed to have 2 mounting holes for
proper securance. Our enclosure also has 2
standoffs inside to provide a mounting spot
for those components with a size hole of
approximately 3mm.

4.3.5. Verification Plan
To test the IPX4 water resistance (light splash and light spray).
1. Assemble the enclosure with necessary parts to ensure water resistance such as
o-ring.
2. Insert a dry piece of paper into the enclosure.
3. Ensure the enclosure is properly sealed and fastened.
4. Hold the enclosure in hand and use a spray bottle to lightly spray water on the
enclosure from several angles.
5. Open enclosure and ensure paper is not wet.
6. Re-close the enclosure and use a bottle to light splash the enclosure from several
angles.
7. Open enclosure and ensure paper is not wet.
To test size constraints.
1. Assembly enclosure with all parts.
2. Use a tape measure to measure the length, width and height of the enclosure.
3. Enclosure should not be over 3”x3”x1”
To test the USB C cable hole.
1. Assembly enclosure with all parts.
2. Use a standard USB C cable and put the cable into the USB C hole located on the
side of the enclosure.
3. Ensure the cable is able to fit inside the hole.
To test the PCB fasteners.
1. Assembly enclosure with all parts.
2. Prior to closing the enclosure ensure there are at least two 3mm mounting screws.

4.3.6. References and File Links

[1] “IP ratings,” IEC. [Online]. Available: https://www.iec.ch/ip-ratings.

File Link: https://drive.google.com/drive/u/1/folders/0AOJNSLM5IKJIUk9PVA

4.3.7. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

03/12/2023 James Added General Validation

03/09/2023 James Initial Creation

4.4. Power Electronics

4.4.1. Description

The power electronics block in our project consists of the design of a battery charging
circuit and the power managing design for the microcontroller and the power for the
charging circuit. This would mean an output of 5V for a microcontroller, and output of
3.3V for a chip, a charging circuit for a 3.7V battery, and the ability to receive 5V
charging power.

4.4.2. Design

In this section, we will explain the overall design of the block consisting of the black box
diagram for the input and outputs, PCB schematics, Parts list, wiring diagram, and other
design documents.

If we take a look at the black box of our diagram in Figure 4.7 we can see that the block
consists of 2 inputs and 2 outputs. Of the 2 inputs we have, one input labeled
“otsd_pwr_lctrncs_dcpwr” would be the outside power coming into the block. This input
is 5v from external power such as a wall outlet with a standardized USB converter. This
is used to charge the battery of the device. However, this input does not directly connect
to the battery as the 5V voltage would overpower the 3.7-volt battery. From the external
power, goes into a circuit to reduce the voltage such as a buck converter. That power
would then go into a lipo battery charging circuit to appropriately regulate the voltage so
as to not overcharge and damage the battery. Our other input for this block is
“enclsr_pwr_lctrncs_mech” which is how the enclosure attaches to the pcb, namely a
usb-c connector and mourning holes. Next is our two outputs which is regulated voltage
coming from the the battery to the sensors labeled “pwr_lctrncs_snsrs_dcpwr” and our
power from our boost converter that goes directly to the microcontroller labeled
“pwr_lctrncs_mcrcntrllr_dcpwr”. All of these circuits will be on one PCB that also has a

https://www.iec.ch/ip-ratings
https://drive.google.com/drive/u/1/folders/0AOJNSLM5IKJIUk9PVA

daughterless microcontroller on it which is a custom designed microcontroller. That way
due to a constraint, we can save the most amount of space for our entire device to be
small.

Figure 4.7: Black box diagram displaying our inputs and outputs

Figure 4.8: Design of the power electronics block.

4.4.3. General Validation
The main purpose of this block is to manage the device's needs in terms of power
consumption. Since we are working with several hardware components, the voltages
needed vary. We are needing to power our microcontroller which operates off 5 volts. We
are also working with our humidity and temperature sensor that operates at 3.3 volts.
Normally, the microcontroller would have a built-in voltage regulator that reduces the
microcontroller’s operating voltage of 5 volts to 3.3 volts, but since this is a custom
daughter microcontroller, that part of the hardware design has been placed into this
block. We also have our 3.7-volt lipo battery that must have a sustained voltage of 4
volts to charge. This is why we need an additional buck converter to reduce the 120-volt
wall outlet to 5-volt from a pre-made circuit.

The PCB that these circuit designs will be mounted on will be a 2-layer PCB
custom-made by a local company such as JLC PCB, 4PCB, and or other distributors
depending on the cost of the board and the shipping time. The components on the PCB
will prioritize surface mount components with a size around 0805 to keep the PCB as
small as possible to both fit in our 3”x3”x1” enclosure and also conserve costs as the
bigger the PCB layout is, the cost goes up exponentially. As we are working with
relatively low-power components that do not draw over 500mA, the trace width on the
PCB can be relatively small. An additional option we have explored to reduce the size of
the PCB would be on our daughterless microcontroller would be to only install the
pinouts needed for our device instead of all connection on the microcontroller.

One major cause for concern that we have anticipated is the availability of parts and
current shipping delays. While prototyping our blocks, we have ensured that we order at
least 3 extra of each part that way we have 2 extra parts to build 2 other devices as
required by our engineering requirements, and 1 extra as a backup in case we lose
components due to their extreme size or a mistake happens while testing. That way, we
do not have to wait an additional week for parts to ship, or for the rare chance the part
we order is no longer in stock. The testing process for this block will consist of
breadboard-mounted components with breakout boards for SMD components that you
can not get for through-hole parts.

4.4.4. Interface Validation

Interface
Property

Why is this interface
property this value?

Why do you know that your design
details for this block

above meet or exceed each property?

Table 4.12: enclsr_pwr_lctrncs_mech : Input

USB C This interface explained
that the enclosure must
have the ability to accept
a cable of USB C size.

Our design meets this property as the power
electronics block has a usb-c receptacle on
the PCB

3mm
mounting
Holes: at
least 2)

This interface property
explains that within the
enclosure, there must be
at least two 3 mm
mounting holes to mount
the PCb and or enclosure
parts together.

Our design meets this property as our PCB
was designed to have 2 mounting holes for
proper securance. Our enclosure also has 2
standoffs inside to provide a mounting spot
for those components with a size hole of
approximately 3mm.

Table 4.13: otsd_pwr_lctrncs_dcpwr: Input

Vnominal:
5V

This value is the standard
voltage of a buck boost
convert output when
connected to a normal
120 volt wall outlet.

For USB Wall Charger:
As our device will only need this component
for charger the LIPO battery, the 5 volts is
sufficient enough as our battery will require
around 4 volts to have efficient charger
capabilities.It will meet this value because
our design is configured to accept this value.

Inominal:
150mA

This Is the current that the
wall converter can output.

For USB Wall Charger:
This is the charger current the 120 volt to 5
volt converter can output which is plenty of
current for the battery as our entire battery
capacity is 2 amps. Within our charging
circuit we will have to put a limiter as to not
over charge or charge the battery too quickly
with the 2 amps.It will meet this value
because this is the standard range AC-DC
converters come in.

Ipeak:
500mA

This max current
supported by our system

For USB Wall Charger:
Within our charging circuit we will have to
put a limiter as to not over charge or charge
the battery too quickly with the 500mA.It will
meet this value because this is the standard
range AC-DC converters come in.

Pnominal:
20W

This is the normal power
that the wall outlet
converter can output.

For USB Wall Charger:
This power value allows for quick charging
capabilities and a wattage this high can
change our 2 amp capacity battery fairly
quickly. This can be found on the description
of the power converter enclosure.It will meet
this value because this is the standard range
AC-DC converters come in.

Table 4.14: pwr_lctrncs_mcrcntrllr_dcpwr: Output

Inominal:
30mA

This will be the average
current our device could
see

For the Boost Converter:
This is relatively an estimate on what our
overall device could draw. For this interface,
we are looking at the power that goes
directly to the microcontroller.

Ipeak: 1.5A This is the largest current
that our microcontroller
can support

For the Boost Converter:
The converter has the capability to output
this current as a max value according to the
datasheet

Vmax: 5.1V The maximum voltage our
microcontroller can use to
function reliably

For the Boost Converter:
The converter can supply 3V to 40V
according to the datasheet

Vmin: 4.6V The minimum voltage our
microcontroller can use to
function reliably

For the Boost Converter:
The converter can supply 3V to 40V
according to the datasheet

Vnominal:
5V

This is the necessary
voltage that our
microcontroller requires.

For the Boost Converter:
We will be boosting our 3.7 volts that come
from the battery to the 5 volts our
microcontroller needs.

Table 4.15: pwr_lctrncs_snsrs_dcpwr: Output

Inominal:
3mA

This will be the average
current our sensor needs
to operate

For the Linear Voltage Regulator:
This is relatively an estimate on what our
overall device could draw. For this interface,
we are looking at the power that goes
directly to the microcontroller.

Ipeak: 5A This is the maximum
possible current drawn by
a pin on the sensor

For the Linear Voltage Regulator:
Has the ability to supply this peak current
according to the datasheet

Vmax: 5V Maximum rating according
to the sensor datasheet

For the Linear Voltage Regulator:
Has the ability to supply this max voltage
according to the datasheet

Vmin: 3V Minimum rating according
to the sensor datasheet

For the Linear Voltage Regulator:
Has the ability to supply this min voltage
according to the datasheet

Vnominal:
3.3V

This is the necessary
voltage that our sensor
requires.

For the Linear Voltage Regulator:
We will be reducing our 3.7 volts that come
from the battery to the 3.3 volts our other
chips need.

4.4.5. Verification Plan
To test the voltage that comes from the external power supply:

1. Plug the standard, premade 120 volts to 5v plug into the wall.
2. Attach a USB to USB C cable to the converter to the USB C female plug on the

test board.
3. Attach the two leads of a multimeter to the positive and negative test terminals on

the board

4. View the multimeter screen and the voltage should be 5v give or take 0.1 volts
To test the voltage coming from the battery:

1. Plug the Lipo battery into the test board to the 2 head pins that are labeled + and
-.

2. Attach the multimeter leads to the positive and negative test points on the board.
3. View the multimeter which should be 3.7 volts give or take 0.1 volts.

To test voltage going into and out of the buck converter:
1. First, we will test the power going into the buck converter by attacking a

multimeter to the test connections before it.
2. After reading the value on the multimeter it should be around 3.7 volts.
3. Next attach the multimeter to the output of the buck converter.
4. After reading the value of the multimeter the voltage should be 3.3 volts

To test the voltage going into and out of the boost converter:
1. First we will test the power going into the boost converter by attacking a

multimeter to the test connections before it.
2. After reading the value on the multimeter it should be around 3.7 volts.
3. Next attach the multimeter to the output of the boost converter.
4. After reading the value of the multimeter the voltage should be 5 volts

To test that the LIPO battery is charging:
1. First, discharge the battery through resistors until the battery measures 3 volts.
2. Plug in the 5v external power supply.
3. Attach a multimeter to the output end of the charging circuit.
4. Read the value at which it should be around 4 volts.
5. After, switch the mode in the multimeter to read amperage.
6. After reading the value on the multimeter, the amperage should be below 500mA

but about 100mA.

4.4.6. References and File Links

[1] “Advanced circuits,” Printed Circuit Board Manufacturer - PCB Manufacturing
and Assembly. [Online]. Available: https://www.4pcb.com/. [Accessed:
18-Jan-2023].

[2] “EECS Project Portal,” Single Project. [Online]. Available:
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleP
roject.php?id=9vBa7B1brA8Osgxc. [Accessed: 18-Jan-2023].

[3] H. L. McKeefry, “Global chip shortages cast a long shadow with no end in
sight,” Digi, 23-Nov-2021. [Online]. Available:
https://www.digikey.com/en/blog/global-chip-shortages-cast-a-long-shadow.
[Accessed: 18-Jan-2023].

[4] “PCB prototype & PCB fabrication manufacturer,” JLCPCB. [Online]. Available:
https://jlcpcb.com/?from=VGB&gclid=CjwKCAiAzp6eBhByEiwA_gGq5JuAip5ZtNF
F8Jrws3EMcVwZ9XrrlYo6_Qzap6F2ZwWGXhwHkI1vxhoCs20QAvD_BwE.
[Accessed: 18-Jan-2023].

Boost Converter Datasheet:
https://www.ti.com/lit/ds/symlink/mc34063a.pdf?ts=1678765528326

https://www.ti.com/lit/ds/symlink/mc34063a.pdf?ts=1678765528326

Sensor Datasheet File:
https://cdn-shop.adafruit.com/product-files/4099/C13024-002+datasheet.pdf

Linear Regulator Datasheet:
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductD
ocuments/DataSheets/21373C.pdf

4.4.7. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

1/17/2023 James Beans Creation of Block Validation Draft

2/8/2023 James Beans Edits added from feedback from reviewers of the rough draft

3/14/2023 James Beans Edits added for interfaces.

4.5. Microcontroller

4.5.1. Description

This is the block that serves as the hardware-side brain for the system. It takes in inputs
from the power supply block and the sensor block and physically sends the information
to the software side of the system. This device receives power from the power block.
This block can be broken down into two major components: the ESP module and the
communication module. Below is a block diagram detailing how these components
communicate, as well as a few lesser modules. It’s important to note this block contains
just the hardware. Being the ESP32 is a microcontroller, it will contain code designed to
collect, interpret, package and send the information. This is not handled in this block
and will not be discussed here.

4.5.2. Design

https://cdn-shop.adafruit.com/product-files/4099/C13024-002+datasheet.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21373C.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21373C.pdf

Figure 4.9: Microcontroller Black Box Diagram

The circuit represented by the diagram above is largely based on an actual ESP32. The
only difference in fact is that it has been stripped of all functionality not required by our
project. This includes streamlining of active pins, removal of the 5V to 3.3V converter,
and the removal of a few connectors and buttons. Preserved are the ESP module and
its USB and UART functionality, as well as a reset button and an enable button. Added
are three connectors and status indicators for power and sensor input.

This block contains two major components and a few minor components. First to be
discussed will be the ESP32 module.

Figure 4.10: ESP32 Module

This component contains the actual processor and recommended circuitry powering and

enabling the chip. Used connections are labeled as nets, and all others are marked as
not connected (NC or “x”). The chip receives 5v at Vdd, with two capacitors acting as
decoupling capacitors. The 5v is necessary to keep the processor in “Awake” mode in
order to operate at full power. The enable pin is connected between a pull up resistor at
3.3v and another decoupling capacitor. The only other pins used are the dedicated I2C
pins (IO22 and IO21), the dedicated UART pins (IO1 and IO3) and the reset pin (IO0).

The second major component is the USB and UART, shown below.

Figure 4.11: USB and UART

This component is based around programming the processor. It includes a micro
USB port, a UART to USB converter, and some logic circuitry enabling the
programmer.

Moving onto the lesser components are the button assemblies, pictured
below.

Figure 4.12: Buttons

The typical ESP32 contains two buttons: one for reset and another for enable. I chose
to include both in my design. The reset button is a necessity in any microcontroller, so it
was a straightforward design choice. I chose to include the enable as well in I needed it
for the programming as well. Their design is simple enough, including a button with one
end connected to ground and the other connected to their associated pin. There is also
a decoupling capacitor to help with debouncing.

The final components are the connectors shown below.

Figure 4.13: Connectors

This is the only component of the entire block I designed from scratch. Normally, the
ESP32 is powered through USB and utilizes a series of header pins for
communication. I chose to remove the header pins to streamline the design. As a
result of the power not being included in the block and not having these
header pins, I needed a way to modularize the inputs. This came in the form of
connectors! The two two-pin connectors are used for 3.3V and 5V power from the
power block. The four-pin connector is used for pulling in an I2C signal from the
temperature/humidity sensors. Each of the sensors includes a status LED in order to

determine whether or not it’s connected. Too many times chasing down shorts to leave
those out.

Finally, pictured below is the layout for the PCB.

Figure 4.14: Layout

4.5.3. General Validation

The main purpose of having this block designed the way it is was to reduce cost and to
conserve space. One of our system requirements is that the entire system must fit inside
a 3” by 3” by 1” cube. As such, a store bought ESP32 is already more than an inch tall,
and that is space we don’t have. This inspired the custom design while occupying nearly
half the space in width and height, nearly a quarter as tall [1]

All the components chosen were chosen due to availability and ease of assembly.

The design itself was fairly simple, as the ESP32 is a well-documented device and all
the information is widely available.

In terms of performance, this block hits all the notes required of it.

In terms of our partner requirements, we hit all the requirements as well.

4.5.4. Interface Validation

Interface
Property

Why is this
interface property

this value?

Why do you know that your design
details for this block

above meet or exceed each property?

Table 4.16: g_mcrcntrllr_rf : Input

Messages: wifi
information
(struct) ex.
username:
mywifi, pw: 1234

Wifi credentials are
presented to the
microcontroller in the
form of an ssid and
password

The ESP32 has the ability to receive
wireless data in multiple different structures

Messages:
sensor name
(string) ex. Indoor

Sensor name is
stored in the
microcontroller and
used to send data to
the cloud database

The ESP32 has the ability to receive string
data over a wireless connection

Messages: reset
(bool) ex. false

A boolean is used for
resetting the sensor
to limit the amount of
data sent

The ESP32 has the ability to receive
boolean values over a wireless connection

Table 4.17: snsrs_mcrcntrllr_comm : Input

Messages:
Humidity

Microcontroller needs
humidity data to send to
the application

The ESP32 can receive I2C communication
in the form of messages from the sensor

Messages:
Temperature

Microcontroller needs
temperature data to send
to the application

The ESP32 can receive I2C communication
in the form of messages from the sensor

Protocol: I2C The sensor uses I2C to
communicate with the
microcontroller

The ESP32 list I2C communion in the
datasheet

Table 4.18: pwr_lctrncs_mcrcntrllr_dcpwr : Input

Inominal:
30mA

This will be the average
current our microcontroller
can see

Average current draw according to the
ESP32 datasheet

Ipeak: 1.5A This is the largest current
that our microcontroller
can support

Largest amount of current the ESP32 can
draw for operation according to the
datasheet

Vmax: 5.1V The maximum voltage our
microcontroller can use to
function reliably

ESP32 can run with this max voltage
according to the datasheet

Vmin: 4.6V The minimum voltage our
microcontroller can use to
function reliably

ESP32 can run with this min voltage
according to the datasheet

Vnominal:
5V

This is the necessary
voltage that our
microcontroller requires.

The typical operating voltage of our ESP32
is 5V, and the circuit can support this
voltage.

Table 4.19: mcrcntrllr_dtbs_rf : Output

Messages:
humidity
(double) ex
80.5

The humidity readings
provided by the sensor
will be transmitted as a
double to the database

ESP32 has the ability to send data over a
WIFI connection to a remote server

Messages:
temperature
(double) ex.
72.1

The temperature readings
provided by the sensor
will be transmitted as a
double to the database

ESP32 has the ability to send data over a
WIFI connection to a remote server

Messages:
tag (string)
ex. Indoor

The sensor name will be
sent as a tag to the
database

ESP32 has the ability to send data over a
WIFI connection to a remote server

Table 4.20: mcrcntrllr_mcrcntrllr_cd_comm : Output

Messages:
Time

Time readings from the
timesync server

ESP32 has the ability time sync with a WIFI
connection

Messages:
Humidity

The humidity readings
are packaged and sent
to the microcontroller
code

Internally, the ESP32 transfers I2C data to
memory and into the code

Messages: Wifi
information ex.
username:
mywifi, pw:
1234

Wifi information is in
the form of ssid and
password

The ESP32 stores wifi information in its
internal flash storage to use with the wifi
provisioning functions in the code

Messages:
Temperature

The temperature
readings are packaged
and sent to the
microcontroller code

Internally, the ESP32 transfers I2C data to
memory and into the code

Messages:
Node name ex.
Indoor

Node name is in string
form for database tag

The ESP32 code needs a tag to distinguish
the sensor data in the database

Table 4.21: mcrcntrllr_cd_mcrcntrllr_comm : Input

Messages:
Time

Time data is needed
for accurate sensor
data readings

ESP32 can package the time data into a
datapoint for the cloud database write over
WIFI

Messages:
Humidity

The humidity readings
in double form are
received

ESP32 can package the humidity data into a
datapoint for the cloud database write over
WIFI

Messages:
Temperature

The temperature
readings in double
form are received

ESP32 can package the temperature data
into a datapoint for the cloud database write
over WIFI

Messages:
Node name ex.
Indoor

Node name is received
as a string for
database tag

ESP32 can package the name data into a
datapoint for the cloud database write over
WIFI

4.5.5. Verification Plan

This is the verification plan for the microcontroller PCB block, it will over all the inputs
and outputs for the block:
1. Set power supply to nominal values (30mA, 5V)
2. Connect sensor and conform readings for temperature and humidity
3. Make sure wifi info, node name, and reset boolean are initialized and stored
4. Run code and confirm ESP32 is correctly powered and data is uploaded to the
database
5. Set power supply to max (5.1V, 1.5A) and run steps 2 through 4
6. Set power supply to min (4.6V) and run steps 2 through 4

4.5.6. References and File Links

[1] F. Waqar, “Sensor System for Self-Driven In-Home Climate Control (ECE),” EECS
Project Portal, Sep-2022. [Online]. Available:
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSinglePro
ject.php?id=9vBa7B1brA8Osgxc.

ESP32 Datasheet:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

4.5.7. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

03/04/2023 Jadon Feedback review and update

01/20/2023 Jadon Initial creation

4.6. Microcontroller Code

4.6.1. Description

This block consists of the program that lives on the microcontroller. The primary function
of the program is to collect data from the sensors via I2C and instruct the microcontroller
to ship the data off to the online database. The code will also provision the wifi of the
microcontroller and receive data from the GUI wirelessly.

This is done by setting a timer on the device and executing certain tasks at certain
times. Every 30 seconds the microcontroller is instructed to send data to the database
and an onboard heater status is toggled. Every minute data is polled from the sensor
and added to a queue of data.

This code was written in such a way that it not only collects data on a schedule, but also
has the ability to store data onboard and remove the data in a timely fashion in the event
of a network disconnect. When the code is not sending, it is looking for wireless data
transmissions from the application.

4.6.2. Design

This section details the design of the code block. Figure 4.15 below shows the black box
diagram for the block. There is one input, mcrcntrllr_mcrcntrllr_cd_comm, which takes in
sensor data, time, and wifi information, and one output, mcrcntrllr_cd_mcrcntrllr_comm,
which sends database information back to the microcontroller.

Figure 4.15: Microcontroller Code Black Box Diagram

Figure 4.16 is the flow chart depicting the layout of the microcontroller code. In the setup
function, the code will begin the wifi provisioning event. Once this event is completed, or
the wifi credentials are already saved, the loop is executed. Every 30 seconds, the
sensor heater state is changed and the sensor data stored in the queue is sent to the
database. Every 60 seconds sensor values are read and stored in the queue along with
a time element, that way if the wifi goes down values are still stored.

Figure 4.16: Microcontroller Code Flow Chart

4.6.3. General Validation

This block meets the needs of the system. The microcontroller code gathers sensor
data, specifically temperature and humidity data, which is a project partner requirement
of our system [1]. The code also directs wireless communication between the application
and the microcontroller, which is another project partner requirement, namely device
pairing and unpairing [1]. Finally, the code sends data to the database, which helps the
system fulfill the graphical data visualization requirement listed on the project page [1].

This design will work for the system in many situations. Looping through the code will
allow different functions to run continuously at specific times. Changing heater states
every 30 seconds makes sure that our temperature and humidity values are the most
accurate. Uploading code regularly makes sure that our GUI is updated with the latest

information. Having a setup function allows the device to check for wifi connection, which
is a critical component of our data collection system.

We could have used different coding techniques, for example Expressif IDF, for more
complex code but that would have added unnecessary complications to our simple
sensor reader and data uploader code block. We can also handle all the necessary
wireless communications using the Arduino platform.

4.6.4. Interface Validation

This section details the interface validation for the microcontroller block

Interface
Property

Why is this interface
property this value?

Why do you know that your design
details for this block

above meet or exceed each property?

Table 4.20: mcrcntrllr_mcrcntrllr_cd_comm : Input

Messages:
Time

Time readings from the
timesync server

The code uses timesync function to sync the
time to the pacific time zone using the server

Messages:
Humidity

The humidity readings
are given to the code
from the
microcontroller

Microcontroller code gathers the humidity
readings from the sensor to package into
database points

Messages: Wifi
information ex.
username:
mywifi, pw:
1234

Wifi information is in
the form of ssid and
password

Code uses wifi provisioning library to gather
wifi information from the GUI application

Messages:
Temperature

The temperature
readings are given to
the code from the
microcontroller

Microcontroller code gathers the
temperature readings from the sensor to
package into database points

Messages:
Node name ex.
Indoor

Node name is sent to
the code in string form

Microcontroller code gathers node name
from GUI code over wireless connection

Table 4.21: mcrcntrllr_cd_mcrcntrllr_comm : Output

Messages:
Time

Time data is needed to
created datapoint for
the database

ESP32 can package the time data into a
datapoint for the cloud database write over
WIFI

Messages:
Humidity

The humidity readings
in double form are sent
to be packaged into
datapoint

ESP32 can package the humidity data into a
datapoint for the cloud database write over
WIFI

Messages:
Temperature

The temperature
readings in double
form are sent to be
packaged into
datapoint

ESP32 can package the temperature data
into a datapoint for the cloud database write
over WIFI

Messages:
Node name ex.
Indoor

Node name is needed
to tag database points

ESP32 can package the name data into a
datapoint for the cloud database write over
WIFI

4.6.5. Verification Plan

The section details the verification plan for the microcontroller block:
1. Check that the microcontroller is connecting to the local network
2. Check that the time is syncing correctly with the server
3. Check that the node name is updated within the code (can be hard coded)
4. Use dummy data to replicate the temperature and humidity
5. Run the code for 5 minutes (Ten 30 second intervals, Five 60 second intervals)

6. Confirm that time, temperature, and humidity is being stored in the queue
7. Confirm that point are being written to the database

4.6.6. References and File Links

[1] F. Waqar, “Sensor System for Self-Driven In-Home Climate Control (ECE),” EECS
Project Portal, Sep-2022. [Online]. Available:
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSinglePro
ject.php?id=9vBa7B1brA8Osgxc.

4.6.7. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

03/04/2023 Jadon Initial Creation

4.7. Sensors

4.7.1. Description

This block consists of the physical sensors that will be feeding information to the
microcontroller which will parse and then send the data to the software side.

As the goal of the system is to report and make decisions upon temperature and
humidity data, these sensors are therefore required to read the local temperature and
humidity of any given location.

4.7.2. Design

The design for this block is fairly simple: find a device that can read in the desired data
and output it in an ordered fashion.

We chose to use the SHT-30 sensor for this purpose. This device is cheap, efficient and
well within margin of error. If purchased in the correct package, it even comes with a
prefab water-proof packaging which will fulfill our project partner requirement of being
waterproof. Figure 4.17 shows the black box diagram of the sensor for our system.

https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc

Figure 4.17: Sensor Black Box Diagram

4.7.3. General Validation

As stated above, this device is relatively cheap and efficient.

This device and package only costs $25. Compared to similar packages at $50 and up,
this device saves the bank. This is important because we have a goal of keeping the
system cost at under $300. We need to build a grand total of three of these nodes, with
each requiring a sensor module. As such, cheaper is better [1].

The efficiency on this model was also an important factor in choosing this device. The
sensor has a rated tolerance of ±0.5°C for temperature and ±2% for humidity. The next
closest module was rated for ±1°C and ±5%. For a system where accurately pulling and
operating on local temperature and humidity data is of utmost importance, having tight
tolerances is a must. If we didn’t have these tight tolerances, we would be defeating the
purpose of pulling local data in the first place [2].

4.7.4. Interface Validation

This section details the interface validations, two inputs and one output:

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Table 4.22: otsd_snsrs_envin : Input

Humidity: Space
Dependent

Outside conditions have
moisture in the air dependent on
weather

The sensor will read this data
value

Temperature
(Absolute): Space
Dependent

Outside conditions have
temperature dependent on
weather

The sensor will read this data
value

Table 4.23: snsrs_mcrcntrllr_comm : Output

Messages: Humidity Microcontroller needs humidity
data to send to the application

The sensor will send this value
according to the datasheet

Messages:
Temperature

Microcontroller needs
temperature data to send to the
application

The sensor will send this value
according to the datasheet

Protocol: I2C The sensor uses I2C to
communicate with the
microcontroller

The datasheet lists I2C as the
sensors communication protocol

Table 4.24: pwr_lctrncs_snsrs_dcpwr : Input

Inominal: 3mA The is the average current drawn
by the sensor according to the
datasheet

The power electronics block has
the ability to supply this current

Ipeak: 100mA This is the maximum possible
current drawn by a pin on the
sensor

The block has the ability to draw
this much current according to the
datasheet

Vmax: 5V Maximum rating according to the
datasheet

The sensor block can handle this
voltage

Vmin: 3V Minimum rating according to the
datasheet

The sensor block can still run at
this voltage

Vnominal: 3.3V Average rating according to the
datasheet

The linear regulator of the power
supply will drop voltage to 3.3 for
the sensor

4.7.5. Verification Plan

This section details the verification plan for the sensor:
1. Set up power supply to run 3.3 V at 3mA to supply for the sensor
2. Confirm that microcontroller receives temperature and humidity data
3. Set power supply to 5V at 100 mA
4. Confirm that microcontroller receives temperature and humidity data
5. Set power supply to 3V
6. Confirm that microcontroller receives temperature and humidity data

4.7.6. References and File Links

[1] F. Waqar, “Sensor System for Self-Driven In-Home Climate Control (ECE),” EECS
Project Portal, Sep-2022. [Online]. Available:
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSinglePro
ject.php?id=9vBa7B1brA8Osgxc.

[2] “Sht-30 mesh-protected weather-proof temperature/humidity sensor,” Adafruit
Industries. [Online]. Available:
https://www.adafruit.com/product/4099?gclid=Cj0KCQiAjbagBhD3ARIsANRrqEvGKt
VbXrLidh9HGwOH-cOX-GIw4mZLwPhFOvTOC5HB9hegqcKkrskaAgc4EALw_wcB

Datasheet File:
https://cdn-shop.adafruit.com/product-files/4099/C13024-002+datasheet.pdf

4.7.7. Revision Table

https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://www.adafruit.com/product/4099?gclid=Cj0KCQiAjbagBhD3ARIsANRrqEvGKtVbXrLidh9HGwOH-cOX-GIw4mZLwPhFOvTOC5HB9hegqcKkrskaAgc4EALw_wcB
https://www.adafruit.com/product/4099?gclid=Cj0KCQiAjbagBhD3ARIsANRrqEvGKtVbXrLidh9HGwOH-cOX-GIw4mZLwPhFOvTOC5HB9hegqcKkrskaAgc4EALw_wcB
https://cdn-shop.adafruit.com/product-files/4099/C13024-002+datasheet.pdf

Date
Revised

Who? Reason Revised/Revisions Made

03/04/2023 Jadon Feedback Review

01/20/2023 Jadon Initial Creation

4.8. Computation

4.8.1. Description

The computation block will take in data from the indoor and outdoor temperature sensors
to determine if windows need to be opened or closed. The user will be able to set a
desired temperature using the application. If the indoor temperature rises above the
desired temp and the outdoor temperature is below the indoor temp, the block will tell the
GUI that windows need to be opened. Humidity will also be used in the computation
block by integrating into a dew point calculation. This will be used to determine if the
outdoor air is too moisture heavy compared to the indoor moisture. If the outdoor dew
point is close to the indoor dew point, the windows can be opened if the temperatures
are correct. The calculation block also determines if a notification needs to be sent using
the previous window state. If the window state changes, the block will output the
corresponding notification integer which is stored and then used by the notification block.
The window status string is based on the window calculation and is used within the UI to
clearly indicate the window status to the user.

4.8.2. Design

This section includes the black box diagram of the calculation block as well as a flow
chart describing the code progression within the block. Figure 4.X, the black box
diagram, shows that the block has one input, g_cmpttn_data, and one output,
cmpttn_g_data. This is technically a bidirectional connection between the code block
and the GUI. Input consists of float values which are: desired temperature, indoor and
outdoor temperature, and indoor and outdoor humidity. The computation block outputs
integer, string, and boolean data. The notification integer values determine what
notification needs to be sent. The string is used to update the window status in the UI,
and the boolean stores the state of the window for reference.

Figure 4.18: Black Box Computation Diagram

Figure 4.19 below showcases the flow chart describing the layout of the code block. At
the top, fahrenheit temperature values are converted into celsius values, this allows the
code to make a proper dew point calculation. The formula for calculating dew point is:
(temp * 17.625)/(temp + 243.04) + log(hmd/100). Once this dew point is calculated for
indoor and outdoor conditions, a simple if statement is run to determine if the windows
need to be opened or closed. If the indoor temp is greater than 1.5 C of the desired
temperature and outdoor temp is lower than indoor temp, the first condition is passed. If
the outdoor dew point is lower than indoor dew point + 5 (meaning they are similar but
outdoor not too large), then the second if passes and the windows need to be opened.
From there, window status boolean and string is changed to open and the notification
integer is updated (send if state changed, don't send if no change). These values are
stored in the GUI database for further use by the application.

Figure 4.19: Calculation Code Flow Chart

4.8.3. General Validation

The calculation block is necessary for our project due to our project partner requirements
and the nature of our project. The main goal of our system is to notify a user when their
windows need to be opened or closed [1]. In order to accomplish this, we must have a
code block that calculates when the windows must be opened based on the data
provided by our sensors. The calculation block accomplishes this within the background
thread of the application using data from the cloud database. By consistently updating
the data in the application, we can make updated calculations to get the proper window
status and statifly our requirement. Our project partners also wanted the user to be
notified outside the GUI, which is why the calculation block includes a notification integer
that is determined by the previous window state [1]. This integer is passed to the

notification block for accurate and timely notifications for the user. The calculation block
is an integral and necessary part of the system.

We decided to implement our calculations on the application due to the ease of data
transfer and communication between the sensors. This allowed us to use more complex
calculations, like dew point calculations, in this block. Dew point is a much better metric
than relative humidity when looking at the moisture in the air [2]. We did not want a user
to open their windows when the moisture content was too high outside, therefore we
used this calculation to compare indoor and outdoor moisture. If the moisture levels were
similar, windows can be opened without creating dampness in the user’ s house.

We could also have implemented this on one of the esp32 sensors, however this would
have added needless complicated networking for this simple of a project and may have
slowed down the results of the calculations. It also would not have allowed users to get
notification when they were away from the house.

4.8.4. Interface Validation

This section contains the two interfaces and their properties. The tables below talk about
each property value and why the design details meet each property.

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Table 4.25: g_cmpttn_data : Input

Messages: outdoor
hmd (double) ex. 75.8

Outdoor humidity is a double in
order to calculate the most
accurate information for the user

When performing calculations in
Java, the numbers involved must
be double or float values or else
the final result may be truncated,
giving inaccurate readings.

Messages: indoor
temp (double) ex.
75.2

Indoor temperature is a double in
order to calculate the most
accurate information for the user

When performing calculations in
Java, the numbers involved must
be double or float values or else
the final result may be truncated,
giving inaccurate readings.

Messages: desired
temp (float) ex. 71

Desired temperature is this value
to make it easy for the user to

The block takes in the desired
temperature to check if the interior

enter the value. The value is a
float to aid in future calculations.

temperature gets too high. The
design for the block utilizes the
float to perform accurate
calculations.

Messages: outdoor
temp (double) ex.
68.9

Outdoor temperature is a double
in order to calculate the most
accurate information for the user

When performing calculations in
Java, the numbers involved must
be double or float values or else
the final result may be truncated,
giving inaccurate readings.

Messages: indoor
hmd (double) ex. 57.3

Indoor humidity is a double in
order to calculate the most
accurate information for the user

When performing calculations in
Java, the numbers involved must
be double or float values or else
the final result may be truncated,
giving inaccurate readings.

Table 4.26: cmpttn_g_data : Output

Messages:
notification type (int)
ex. 0 (0 is none, 1 is
open window, 2 is
close window)

The notification type integer is
used to determine the notification
sent to the user. An int is used
since three states are needed for
window state: open, close, or no
change.

The design of the block sets the
integer to 0 unless a state is
changed, therefore it meets the
expectations for this property.

Messages: window
status (boolean) ex.
false (true is open,
false is closed)

The window status boolean is
used since the current window
status just needs two states,
opened or closed.

The design of this block sets the
boolean true if all the sensor
specifications are met or defaults
to false. The design meets
expectations for the window
status of the system.

Messages: window
string (String) ex.
"Closed"

The window string changes
along with the window status
boolean, it works the same way
but allows the UI to easily
update.

The design of this block for this
property is the same as the
boolean, therefore it continues to
meet expectations.

4.8.5. Verification Plan

This section details the verification plan for the computation block. The plan will go
through the process of verifying that the input interfaces produce the output interfaces.
1. Open Android studio and build the project. Once the project has been built, open the
background worker class and scroll to the windowCalculation() function.
2. Call function in the worker class and enter dummy data for indoor and outdoor
temperature and humidity into the function call (data: 75, 45, 68, 80).
3. Open application on device. Tap on the window status text box and enter the desired
temperature in the pop-up window.
4. Refresh activity to run background worker class. Look at the log in android studio to
verify that each of the three outputs are printed to the log (window status is “false”, string
is “closed” and int = 0)
5. Change the dummy data in the function call (usually just change outdoor humidity =
50) and open the main page again.
6. Look at android studio logs and verify output changed accordingly (window status now
“true”, string is “open” and int = 1)

4.8.6. References and File Links

[1] F. Waqar, “Sensor System for Self-Driven In-Home Climate Control (ECE),” EECS
Project Portal, Sep-2022. [Online]. Available:
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSinglePro
ject.php?id=9vBa7B1brA8Osgxc.

[2] “Dew Point vs Humidity,” NOAA: US Dept of Commerce, 26-Jan-2021. [Online].
Available: https://www.weather.gov/arx/why_dewpoint_vs_humidity

4.8.7. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

01/20/2023 Blake Initial Creation

4.9. Database

https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://www.weather.gov/arx/why_dewpoint_vs_humidity

4.9.1. Description

The database block allows our system to collect, store, and display sensor data over a
longer time period. Temperature and humidity data from our sensor comes into the block,
where it is packaged by the microcontroller using relevant tags and identifying
information, such as username and node name (indoor/outdoor). This packaged data is
then sent to our time series cloud database, Influx DB, over WIFI where data is stored
with a timestamp the moment it arrives. I chose Influx DB due to its wide range of
applications and code examples for both Arduino (ESP32) and Java (Android
application) as well as the automatic timestamp collection component, which is important
for our project.
In the database, different accounts (usernames) will be tagged within a single bucket of
data and the sensor name will be tagged underneath the user for further organization.
Once the data is stored, our Android application will query the database using these tags
to collect temperature and humidity data as well as the timestamp from specific sensors.
This data will be used in our GUI to create time graphs for all the sensors attached to a
user. One of our project partner requirements was the ability to visualize sensor data in
our application, and the database block allow the creation of this time-based graph with
time on the x-axis and temp/hmd data on the y-axis. We will also use the temperature
and humidity values in the computation block to determine when the windows need to be
opened or closed. This was another major requirement of the system (window
notifications) and the database block helps accomplish this by gathering and sending
critical data for the calculations. Finally, one of our system requirements is the ability to
show current temperature data, and the database block is needed to update the user
interface with the most updated and last time stamped data point.

4.9.2. Design

This section includes the black box diagram of the database block as well as the flow
chart of the code needed to execute both the data upload and to query the sensor data.
Figure 4.20, the black box diagram below, shows that the block has one input,
mcrcntrllr_dtbs_rf, and one output, dtbs_g_rf. The input to the database block comes
from the ESP32 microcontroller sensor code. Its form is floating point values that store
temperature and humidity data and tag strings that store node names. For example,
mcrcntrllr_dtbs_rf will contain temp = 72.1, hmd = 80.6, measurement = values, and tag
= outdoor. The output from the database, also seen in Figure 4.20, goes to the GUI
block. Its form is also floating point values for temperature and humidity (same as input)
along with the same measurement and tag values in the form of strings. The output
differs from the input in that a new timestamp element is included in the form a Date
object, which is the standard time element in Java.

Figure 4.20: Black Box of Database Block

Figure 2 showcases the interior flow of the data from the ESP32 to the application. There
are two separate components to the database block: data upload and data query. The
data upload section happens on the ESP32. Once it enters the block, the code will add
the input interface properties to an Influx dB data point, which is a class built for the
Arduino IDE. The data point contains a measurement, fields for temp and hmd, and a tag
for the sensor location. After that, an Influx DB client will be created using the cloud
storage URL, our account code, and a token for certification. After WIFI and server
connections are rechecked and possibly reestablished, the point is written to the
database using the Influx DB client. The upload loop will run every 5 min to ensure the
most updated data while also saving battery.

From this point, Figure 4.21 shows that a timestamp in the form Year-Date-Time is
added to the datapoint. The cloud database will store the data for up to 30 days. Getting
data from the server is called a query. The right half of Figure 2 shows how our android
application will query the data. On the app, a new Influx DB client is created using the
same information on the ESP32 (URL, account, token, bucket name). Then, the Influx
DB Query Java API uses a series of information, such as bucket name (which is our
case is “Sensor Data”), date range (-1 day), and measurement (or account name) to
query the data using a structure called flux. The query creates a flux table, which is used
is organize the data that is queried. Values in each table row are pulled out and used for
various UI elements within the application. Items like current temperature and humidity
data are used to update the internal databases which control UI elements on the main
screen, and timestamps with temp/hmd values are used to create graphs on the info
pages. This query process will happen in a background thread and continually update
the UI elements every 5 minutes, or when the page is resumed to ensure the user
always sees the most updated data.

Figure 4.21: Arduino + Application Code Flow Chart

4.9.3. General Validation

The general validation section describes why the design from above fits the needs of the
system. Needing both a hardware sensor and an application for user interaction, having

a cloud database for data storage is the best solution and helps with the connection
between the two subsystems (as shown in Figure 2 from the design).

The database block is an important part of the climate control sensor system. One of the
requirements of the system is to visualize sensor data within a graphical user interface.
Our project partners want graphical data visualization to help the users of our system
see the temperature and humidity fluctuations outside and within their house [1]. This will
help them better understand the impact of opening and closing their windows. Design
decisions that allow this to happen is the use of a time series database. Time data is
necessary to create accurate graphs in our application, and Influx DB automatically
timestamps data points and is accurate to the second [2]. I was also very familiar with
Influx DB writing and queries since I used it for many data applications during my
summer internship.

Another requirement of the system is the ability to allow users to create accounts.
Having a cloud-based storage that connects with both the sensors and the application
allows the system to have organized data locations for individual users. Local storage
could have been an option, but all the data would have been locally accessed (home
WIFI only) and there would be no need for accounts. System performance is also much
better with a cloud-based storage system since data can be accessed from anywhere,
allowing users to be notified outside of their house [3]. This cloud storage foundation
could potentially allow automatic window opening and closing in future iterations of the
system.

In terms of the reasons for the design of the block, we made a choice to build an android
application because of the availability, cost, and ease of the use of the platform. ESP32
modules have built-in wireless connections, which make it simple to connect to our
database. Influx DB is also a free service with significant amounts of documentation for
both Arduino and Java. Splitting the block into two sections, write and query, made
implementing the database much easier. We also didn’t need the application to write
anything to the database or the ESP32 to query data, so those code block are not
included.

One alternate solution for this block would be to cut out the cloud-based storage solution
and directly send temperature and humidity data to the application on the local network.
The system could use the WIFI to send JSON packets with temp, hmd, and name data
to the application. The application could then store this data on the device for a few days
and update the UI elements as needed. As discussed above, this solution has future
limitations, but it is viable.

4.9.4. Interface Validation

This section details the interface properties for both the input and the output. As
discussed in previous sections, the system requires data storage and transfer to
complete system requirements like data visualization and updated information in the
GUI. Properties like temperature and humidity data use a float format to get the most
accurate and easy to read numbers, while other messages like measurements and tags
are string objects to find data relating to the correct sensor subsystem. Both input and
output interfaces use Influx DB libraries to create and query points in each language,

and the time stamp is outputted as a Date object to make time graphs easier to create
on the application.

Interface Property Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each

property?

Table 4.27. dtbs_g_rf : Output

Messages:
temperature (float) ex.
72.1

The temperature and humidity data
were chosen to be float based for
our sensor accuracy. Rounding to
the tenths place helps users to
visualize the data easily within our
user interface. We also want the
data to be easily to graph and
visualize, and this form helps us
achieve that goal.

This data format is easiest to
write and query from the
database. While the database
can handle all forms of data,
numbers with only a few
decimal places are best.

Messages: tag (string)
ex. user1, indoor

Tags for the data were chosen
because we needed to separate
data by sensor and by account. For
Influx DB, tags are normally strings
for ease of use when querying the
output.

This meets the standards for
Influx DB, tags must be string
data. I also know it is easiest
to use tags to display cleanly
to the user.

Messages: time stamp
ex.
2023-1-12T20:36:45

The time stamp was chosen for the
output due to the requirement to
visualize data in our application.
This format is what comes standard
with Influx DB and can be easily put
into a Date object for graph
creation.

Our design specifies time as
a key data value for our GUI.
Using this interface value
from the time series database
is best for our purposes of
data visualization and using
time as a component in our
window open and close
calculations.

Messages: humidity
(float) ex. 80.5

The humidity data were chosen to
be float based for our sensor
accuracy. Rounding to the tenths
place helps users to visualize the
data easily within our user interface.
We also want the data to be easily

This data format is easiest to
write and query from the
database. While the database
can handle all forms of data,
numbers with only a few
decimal places are best.

to graph and visualize, and this
form helps us achieve that goal.

Table 4.28. mcrcntrllr_dtbs_rf : Input

Messages:
temperature (double)
ex. 72.1, humidity
(double) ex. 80.5

The temperature and humidity data
were chosen to be a double based
on our sensor accuracy. Rounding
to the tenths place helps users to
visualize the data easily within our
user interface. We also want the
data to be easily to graph and
visualize, and this form helps us
achieve that goal.

Based on past experiences
with Influx DB, I know that
this data format is easiest to
write and query from the
database. While the database
can handle all forms of data,
numbers with only a few
decimal places are best.

Messages: tag (string)
ex. user1, indoor

Tags for the data were chosen
because we needed to separate
data by sensor and by account. For
Influx DB, tags are normally strings
for ease of use when querying the
output.

This meets the standards for
Influx DB, tags must be string
data. I also know it is easiest
to use tags over changing a
data field or adding it to the
end of the sensor data.

Protocol: Influxdb
Client Library (Arduino)

The ESP32 uses the Arduino IDE
for compile and code upload. The
Influx DB client library is part of the
Arduino system and is necessary
for creating clients and writing data
points in our code.

The Influx DB Client Library
on GitHub gives example on
how to create data points and
write data. I chose to
implement this database
because it uses time stamps
and I worked with it
previously [5].

4.9.5. Verification Plan

This section details the verification plan for the database block. The verification plan will
go through the process of making sure each input interface property makes the
corresponding output interface property. For example, if the temperature is 72.1 at the
input, the output must also show 72.1 as the temperature. This is important for accurate
UI data within our application.

ESP32 Verification
1. Power up ESP32 using USB power. Confirm that Influx Client information (URL, token,
account code, bucket) are correct.

https://github.com/tobiasschuerg/InfluxDB-Client-for-Arduino

2. Name the measurement (point) “values” to simulate account information. Name tag
“Indoor” to simulate sensor name.
3. Create float values for temperature and humidity. Write a code block within the loop
that increases both data values every minute. This will simulate float data coming from
the sensor and show that changing data on the input will change the output.
4. Compile and run ESP32 code. Let the microcontroller write pseudo sensor data to
Influx DB for at least 5 minutes. This allows the database to populate with values and
time stamps that are graphable.
5. Log into Influx DB cloud account. Find the “Sensor Data” bucket and use an online
query to confirm that data has been uploaded in the proper location.

Android Application Verification
6. Open Android studio and check that Influx Client Data (URL, token, account code,
bucket) have the correct values that match the values on the ESP32 in both the Worker
class (background data query on a timer) and the node info activity (where the graphs
are located).
7. Plug in a test device to the computer. Build and run the application on the device.
8. Look at data points to see if they match the input data in the system log. More
specifically, check that time values are accurate for the current time (UTC), the sensor
name matches the input sensor name, and temperature and humidity match the input
values.
9. Check the temperature and humidity graphs in the info node activity properly
populated with the data being queried from the database. Check that the most recent
temperature and humidity data are show on the main screen.

4.9.6. References and File Links

[1] F. Waqar, “Sensor System for Self-Driven In-Home Climate Control (ECE),” EECS
Project Portal, Sep-2022. [Online]. Available:
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSinglePro
ject.php?id=9vBa7B1brA8Osgxc.

[2] “Time Series Database,” Hazelcast. [Online]. Available:
https://hazelcast.com/glossary/time-series-database/.

[3] S. Naseem, “Here's what really matters in cloud vs local storage.,” Communication
Square LLC, 10-Nov-2022. [Online]. Available:
https://www.communicationsquare.com/news/cloud-vs-local-storage/.

[4] Influxdata, “Influxdata/influxdb-client-java: Influxdb 2 JVM based clients,” GitHub,
03-Nov-2022. [Online]. Available: https://github.com/influxdata/influxdb-client-java.

[5] T. Schuerg, “influxdb-client-for-arduino,” GitHub, 14-Oct-2022. [Online]. Available:
https://github.com/tobiasschuerg/InfluxDB-Client-for-Arduino.

4.9.7. Revision Table

https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://eecs.engineering.oregonstate.edu/capstone/submission/pages/viewSingleProject.php?id=9vBa7B1brA8Osgxc
https://hazelcast.com/glossary/time-series-database/
https://www.communicationsquare.com/news/cloud-vs-local-storage/
https://github.com/influxdata/influxdb-client-java
https://github.com/tobiasschuerg/InfluxDB-Client-for-Arduino

Date
Revised

Who? Reason Revised/Revisions Made

02/08/2023 Blake Updated Description with relevant system requirements, added specific
figure descriptions to Design section, added citation to General
Validation, added table labels, added intro paragraph to sections 3-5,
updated verification to include UI element checking.

01/20/2023 Blake Initial Creation

5. System Verification Evidence

5.1. Universal Constraints
5.1.1. The system may not include a breadboard

Our system meets the breadboard requirement since it does not contain a breadboard. Our
system only includes a battery, PCB, sensor and switches as our main hardware and everything
is connected using the PCB.

Figure 5.1: Complete System (shows no breadboard)
5.1.2. The final system must contain a student designed PCB.

Our system meets the student designed PCB requirement. Our sensor PCB was designed by
Jaden and includes our ESP32 and battery power circuits as well as connectors to our sensors,
battery and buttons. It contains 214 smd pads and sits inside our enclosure as the main
hardware component of our system.

Figure 5.2: PCB Design Schematic

Figure 5.3: Fully Assembled PCB

5.1.3. All connections to PCBs must use connectors.

Our system meets the connector requirement. Our PCB uses connectors to power and send
data from our sensors, battery, and button peripherals. The image below showcases our

finished PCB with all our components connected to it. Additional wires were used to correct
errors and were not part of the original design.

Figure 5.4: PCB with connectors

5.1.4. The system may be no more than 50% built from purchased
'modules.'

Table 5.1: Modules

Block Built/Bought

GUI Built

Notifications Built

Enclosure Built

Power Electronics Built

Microcontroller Bought

Microcontroller Code Built

Sensors Bought

Computation Built

Database Built

Total Percentage of Blocks Built: 77.8%

5.1.5. All power supplies in the system must be at least 65% efficient.

We use an LDO to power all the components in our system. The battery provides 3.7 volts, our
LDO drops that down to 3.3 V. From the datasheet, the power loss equation provided is Pd =
(Vin_max - Vout_max) * Iout. Calculations are shown below:

Vin_max = 3.7V
Vout_max = 3.3V
Iout = 500mA

Pd = (3.7V - 3.3V) *0.5 A = 0.2 W
Pout = 3.3V*0.5A = 1.65 W
Pin = Pout + Pd = 1.65W + 0.2W = 1.85W

Efficiency = Pout/Pin = 1.65/1.85 = 0.8918 = 89.18%

5.2. Requirements

5.2.1. Battery

5.2.1.1. Project Partner Requirement: Rechargeable battery
5.2.1.2. Engineering Requirement: The system will operate for at least 1

week on a single charge.
5.2.1.3. Testing Method: Test

https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21373C.pdf

5.2.1.4. Verification Process:
1) Detached from wall power 2) Put DMM inline with battery 3)
turn on device 4) Find average amount of current battery is
drawing 5) Use to calculate how many hours device will run on
single charge
Pass Condition: Device will power for 7 or more days (168 hrs)

5.2.1.5. Testing Evidence: Average battery draw = 11.27mA (see image
below). 2000mAh/11.27mA = 177.46 hrs > 168 hrs. Therefore the
device will run for 1 week on a single charge.

Video Link: https://youtu.be/gqC4mDlCtEo (Verified 05/09/2023)

Figure 5.5: Battery Test Evidence (Verified 05/05/2023)

5.2.2. Device Labeling

5.2.2.1. Project Partner Requirement: Ability to mark a certain module as
indoor or outdoor

5.2.2.2. Engineering Requirement: The system will have the ability to
name device subsystems within the application.

5.2.2.3. Testing Method: Inspection
5.2.2.4. Verification Process:

1) Open the application and add device 2) Name device 3) Check
that device name is correct
Pass Condition: Device subsystems are correctly labeled in the
application

5.2.2.5. Testing Evidence:

https://youtu.be/gqC4mDlCtEo

Figure 5.6: Device Labeling Screen Shots (Verified 05/05/2023)

5.2.3. Device Size

5.2.3.1. Project Partner Requirement: Module and Housing must fit
within a 3”x3”x1” space

5.2.3.2. Engineering Requirement: The system device subsystem will be
no larger than 3x3x1 inches of space.

5.2.3.3. Testing Method: Inspection
5.2.3.4. Verification Process:

Use a ruler to measure each side and check dimensions are
smaller than 3x3x1 inch.
Pass Condition: Device size within listed specifications

5.2.3.5. Testing Evidence:

Figure 5.7: Device Size Evidence (05/11/23)

5.2.4. GUI

5.2.4.1. Project Partner Requirement: GUI interface
5.2.4.2. Engineering Requirement: The system will show the current

temperature data and at least 9 out of 10 users report they can
see the current temperature easily.

5.2.4.3. Testing Method: Demonstration
5.2.4.4. Verification Process:

1) Take a screenshot of the working home screen 2) Create
Google form asking the question “Is the temperature provided by
the GUI easily readable?” 3) Confirm that 9 out of 10 users answer
yes
Pass Condition: 90% of users answer yes to the question “Is the
temperature provided by the GUI easily readable?”

5.2.4.5. Testing Evidence:

Figure 5.8: GUI Form Pie Chart

Video Link: https://youtu.be/EU-kbv03sAU (Verified 05/07/2023)

Form Link:
https://docs.google.com/forms/d/e/1FAIpQLSdVVWecX0Qr9RtCPfkTS1m3DCHS
Prjn0bqIk7gHzpNzbKKWYQ/viewform?usp=sf_link

5.2.5. Notifications

5.2.5.1. Project Partner Requirement: Notifies user when to open or
close windows

5.2.5.2. Engineering Requirement: The system will notify users of
requested change in window status in a way that at least 9 out of
10 of users report was easy to understand.

5.2.5.3. Testing Method: Demonstration
5.2.5.4. Verification Process:

1) Take a screenshot of open and closed notifications 2) Create a
Google form with a screenshot that asks "Are the window status
notifications easy to understand?" 3) Confirm that 9 out of 10
users answer yes
Pass Condition: 90% of users answer yes to the question "Are
the window status notifications easy to understand?"

5.2.5.5. Testing Evidence:

Figure 5.9: Notification Form Pie Chart

Video Link: https://youtu.be/jl7MP--Ijcw (Verified 05/07/2023)

Form Link:
https://docs.google.com/forms/d/e/1FAIpQLSdGiHRDYi3s8qDJfXtWrIp0X4u4RLi
RaR2uts7qFV_po4u08g/viewform?usp=sf_link

https://youtu.be/EU-kbv03sAU
https://docs.google.com/forms/d/e/1FAIpQLSdVVWecX0Qr9RtCPfkTS1m3DCHSPrjn0bqIk7gHzpNzbKKWYQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdVVWecX0Qr9RtCPfkTS1m3DCHSPrjn0bqIk7gHzpNzbKKWYQ/viewform?usp=sf_link
https://youtu.be/jl7MP--Ijcw
https://docs.google.com/forms/d/e/1FAIpQLSdGiHRDYi3s8qDJfXtWrIp0X4u4RLiRaR2uts7qFV_po4u08g/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdGiHRDYi3s8qDJfXtWrIp0X4u4RLiRaR2uts7qFV_po4u08g/viewform?usp=sf_link

5.2.6. Sensors

5.2.6.1. Project Partner Requirement: Temperature and humidity
sensors

5.2.6.2. Engineering Requirement: The system will gather temperature
and humidity data that is accurate within 5 degrees Celsius and
10% humidity.

5.2.6.3. Testing Method: Test
5.2.6.4. Verification Process:

1) Get an already accurate device and measure current
temperature and humidity values 2) Compare values gathered by
the system to these collected numbers

5.2.6.5. Pass Condition: System values are within 5 degrees C and 10%
humidity of collected values

5.2.6.6. Testing Evidence: Values read from accurate device (Kestrel):
74.9 ℉ and 50.5 % humidity. Values read from our system: 73.9 ℉
and 45.9 % humidity.

Figure 5.10: Sensor Accuracy Evidence (05/10/2023)

5.2.7. Weather Proof Enclosure

5.2.7.1. Project Partner Requirement:Weatherproof (IPX4) container
5.2.7.2. Engineering Requirement: The system device subsystem will be

weatherproof to an IPX4 water resistance (water splashes from
any direction).

5.2.7.3. Testing Method: Test

5.2.7.4. Verification Process:
1) Splash water on each device subsystem from all directions 2)
Check that no water is inside the enclosure
Pass Condition: No water is inside the enclosure

5.2.7.5. Testing Evidence:

Figure 5.11: Inside Enclousure (05/11/2023)

5.2.8. Wireless

5.2.8.1. Project Partner Requirement:Wireless communication to
transmit data

5.2.8.2. Engineering Requirement: The system device subsystem will
pair with the application subsystem wirelessly

5.2.8.3. Testing Method: Test
5.2.8.4. Verification Process:

1) Turn on device subsystem 2) Open application and start pairing
process 3) Check the process completes wirelessly
Pass Condition: Device subsystem temperature and humidity
data is viewed within the application subsystem

5.2.8.5. Testing Evidence:

Video Link: https://youtu.be/oUATXdjgrNo (Verified 05/09/2023)

5.3. References and File Links

5.3.1. References (IEEE)

5.3.2. File Links

https://youtu.be/oUATXdjgrNo

5.4. Revision Table

Date
Revised

Who? Reason Revised/Revisions Made

05/07/23 Blake Added Testing Evidence to Battery/GUI/Notifications

03/12/23 Blake Initial Creation

6. Project Closing

6.1. Future Recommendations

This section details the items we are recommending a future team working on the project
to complete and consider. It will look at three different types of recommendations:
technical recommendations, global impact recommendations, and teamwork
recommendations.

6.1.1. Technical Recommendations

One recommendation we would make is a more efficient PCB design. Currently, the PCB
has a total width of about 2’’ by 1.5’’. This could be reduced further with a design that
utilized both sides of the board, or even a three layer PCB [1]. In addition, quite a few of
the routing options, while acceptable, leave the device susceptible to communication
errors. This is due to data paths crossing each other and high frequency lines next to
each other. This could be resolved by simply adding another layer or better utilizing the
two existing layers. The USB communication could also be slowed down to better the
communication efficiency [2].

A second recommendation for the project would be to work on improving the enclosure.
Currently the enclosure is a 3D printed 2 piece enclosure that sandwiches the parts
within. With a limited size of 3”x3”x1”, the enclosure could be decreased in size even
more that what it is currently designed as. Additionally, since the temperature and
humidity sensor is externally mounted, a better secure brace should be made to cradle
the sensor to prevent it from coming loose when falling from tall heights. This can be
done by looking at common practices for bracing enclosures [3].

A third technical recommendation for calculation improvement using more data points,
such as the feels like temperature, cloudiness, wind, pressure, aside from the main data

points which are the temperature and humidity. These data points can be collected using
the open weather api [4]. Once these are pulled, an improved calculation block could
take this data and recommend window closing when it is raining for example or the sun
is directly on a window.

Another recommendation is improving upon the wireless systems and connections
between the application and the sensor. Currently, our system sets up a wifi network with
a bluetooth connection and then uses our database to transfer our data. To improve this
system, a team could implement a direct connection between the subsystems using a
protocol like HTTP [5]. This would allow the project to send more information when the
user is connected locally and potentially speed up the data transfer process.

6.1.2. Global Impact Recommendations

Being an IoT device, our system interacts with the outside world quite often. When you
open your windows, one of the most important conditions for health is air quality. Poor air
quality can be dangerous for people inside the home, where a concentration of polluted
air can lead to shortness of breath, coughing, chest pain, nausea, fatigue and asthma
attacks for those at risk. An easy solution exists for this that we didn't have time to
implement, location based weather data. If you asked the user for their location, a future
group could use a weather api to find the local air quality and use that data to make a
decision for the user's windows. You can learn more about the weather api on the
website below [4].

Another recommendation we have for a future group is about the cost of our device. Our
sensors use many chips and modules to allow our team to fulfill all our requirements.
Due to the global chip shortage, these components are rapidly increasing in price and
are limited in availability. Our temperature and humidity sensor cost $25 per unit. With
this cost, a sensor could cost between $50 and $100 to build which could potentially be
too much for buyers. Our solution would be to look at part prices to get the cheapest and
potentially make your own waterproof sensor (SHT30 sensors without waterproofing are
much cheaper) [6].

6.1.3. Teamwork Recommendations

When it comes to teamwork recommendations, our group had two main suggestions to
help future groups. The first recommendation is weekly work times. Our group had
regularly scheduled meetings with our project partners, and 2 hours to work during class,
but we lacked dedicated time to work as a group without distractions. While we worked
well as individuals, creating the entire system was difficult without dedicated work time.
One solution could be to set up a weekly time using a website like when to meet and
dedicate at least 2 hours to working together to do group work [7]. Another solution
would be to create a list with tasks that are checked off when a group member
completes the task, that way work can be evenly divided among group members.

Our second recommendation is to create a place where all documents are stored early in
the process, particularly when it comes to code. Early in the fall term, our group decided
to create a google drive to store all of our documents, but storing more complex files, like
code and pcb files, became a challenge. Later in spring term, we created a Github repo
to store these files and be able to collaborate on them. As a team, we should have done
this much sooner in order to collaborate more efficiently [8].

[1] EMS Solutions, “How to reduce PCB size,” EMS Solutions, 29-Aug-2022.
[Online]. Available: https://www.myemssolutions.com/how-to-reduce-pcb-size/

[2] Sherly and T. King, “How to fix slow USB transfer speed and speed up USB in
Windows 10/8/7,” EaseUS, 22-Feb-2023. [Online]. Available:
https://www.easeus.com/computer-instruction/fix-slow-usb-transfer-speed.html

[3] D. Papp, “Simple tips for better 3D-printed enclosures,” Hackaday, 16-Nov-2020.
[Online]. Available:
https://hackaday.com/2020/11/16/simple-tips-for-better-3d-printed-enclosures/

[4] “How to start to work with openweather API - openweathermap.” [Online].
Available: https://openweathermap.org/appid

[5] “Esp32 HTTP GET and HTTP post with Arduino IDE,” Random Nerd Tutorials,
27-Oct-2022. [Online]. Available:
https://randomnerdtutorials.com/esp32-http-get-post-arduino/

[6] “Sht30-dis-b2.5ks: Digi-Key Electronics,” Digi. [Online]. Available:
https://www.digikey.com/en/products/detail/sensirion-ag/SHT30-DIS-B2-5KS/5872250

[7] When2meet. [Online]. Available: https://www.when2meet.com/

[8] “Create a repo,” GitHub Docs. [Online]. Available:
https://docs.github.com/en/get-started/quickstart/create-a-repo

6.2. Project Artifact Summary with Links

Project Repo Link: https://github.com/NikeGolf36/SeniorDesign
This Github project repo contains all the schematics, code, and documentation for the
project. Within the main repo, additional repos are linked which contain our application
code, microcontroller code and pcb layout. Enclosure files and any additional
documentation (including this document) are present as well.

https://www.myemssolutions.com/how-to-reduce-pcb-size/
https://www.easeus.com/computer-instruction/fix-slow-usb-transfer-speed.html
https://hackaday.com/2020/11/16/simple-tips-for-better-3d-printed-enclosures/
https://openweathermap.org/appid
https://randomnerdtutorials.com/esp32-http-get-post-arduino/
https://www.digikey.com/en/products/detail/sensirion-ag/SHT30-DIS-B2-5KS/5872250
https://www.when2meet.com/
https://docs.github.com/en/get-started/quickstart/create-a-repo
https://github.com/NikeGolf36/SeniorDesign

Application Repo Link: https://github.com/NikeGolf36/ClimateControlApp
This Github repo contains the android application code. Cloning this repo and opening in
android studio will allow the user to download the application. A readme is included,
which walks the user through the process.

ESP32 Repo Link: https://github.com/NikeGolf36/ESP32_Sensor
This Github repo contains the C++ code to the esp32 microcontroller. The code can be
run using the Arduino IDE.

PCB Repo Link: https://github.com/NikeGolf36/Sensor_PCB
This Github repo contains the Kicad project, schematic, and PCB files for the sensor
system. A user will be able to clone this repo and create the gerber files within the Kicad
application.

6.3. Presentation Materials

Project Showcase Link:
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=K11SITWJuzWW8SQn

https://github.com/NikeGolf36/ClimateControlApp
https://github.com/NikeGolf36/ESP32_Sensor
https://github.com/NikeGolf36/Sensor_PCB
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=K11SITWJuzWW8SQn

