

Oregon State

University Selection Of A Durable, Sustainable And Cost Effective Asphalt Mixture For Pavements In Oregon

By:

Vikas Kumar (Ph.D. student) Ihsan Obaid (Ph.D. student) Alex Sutherland (U.G. student)

Sponsor: Erdem Coleri, PhD (Assistant Professor)

COLLEGE OF ENGINEERING

School of Civil and Construction Engineering

Outline

Introduction

- **Problem statement**
- **Objectives**
- **D**Methodology
- **Strategies for Mix Design**
- **D**Major conclusions

Asphalt mixture?

- Warm Mix
- Latex
- Rubber
- Recycled Plastic
- Lime
- Fibers

pavementinteractive.org

parkleasandsoil.com.au

https://www.pinterest.com/pin/671528994411571559

Asphalt Surfaced Pavement Distresses

Fatigue cracking

https://www.pavementinteractive.org, https://www.wolfpaving.com/blog/what-to-do-when-you-see-alligator-cracking-in-asphalt

Problem Statement

Existing analysis and design methods \rightarrow empirical

- Need for holistic evaluation and design of asphalt mixture based on performance
- Cracking
- ✓ Rutting

Objectives

- ✓ Design three trial asphalt mixtures
- \checkmark Evaluate the trial mixes for cracking and rutting performances
- ✓ Determine design binder content range for each mix using the balanced asphalt mix design method developed for Oregon
- \checkmark Determine the cost and environmental impact of all three mixtures

✓ Recommend the "best" asphalt mixture for the given conditions by considering the cost-effectiveness, sustainability and the long-term performance of the mixes

Balanced Mix Design

"asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure".

Volumetric Mix Design vs Balanced Mix Design (Example)

Note: Example for Illustration Purposes.

Source: NCAT Balanced Mix Design Training Course

Balanced Mix Design Approaches

Approach 1 Volumetric Design with Performance Verification

Strategies for Mix Design

Mix2. High RAP content

Source: https://www.kwcornerstone.com/b/recyclingasphalt-pavement-for-your-cambridge-property--theenvironmental-impact-of-green-paving

RAP content increased to 45%

Mix3. Warm-Mix Asphalt

Mix1: Density Effect

- Volumetric mix design with current process and Superpave 5 process i.e., mix designed at and compacted to 5% airvoid.
- Impact on stripping and permeability not investigated but Superpave 5 mix is expected to have higher cracking and rutting resistance.

Mix with 7% target airvoid (conventional)

Mix2: High RAP content

- Reduction in pavement life cycle costs, conserves natural resources, protects the environment
- Currently in Oregon, 20-30% Reclaimed Asphalt Pavement is commonly used in pavements.
- For this strategy, RAP content was increased to 45%

Mix3: Warm Mix Asphalt

- Evotherm[®] was used as a warm-mix additive
- The chemical additive dosage was calculated according to the following equation:

 $\% Adjusted Evotherm \, dosage = \frac{(\% \, Target \, Evotherm \, dosage) \times (\% \, Total \, binder)}{(\% \, Total \, binder \, - \, \% \, Binder \, from \, RAP)}$

Mix Type	Mixing Temperature (°C)	Compaction Temperature (°C)
HMA (Mix1)	173	160
WMA (Mix3)	140	126

Experimental Plan and Production Mixture Information

ID ^a	Binder Grade	RAP ^b (%)	AC _{RAP} (%)	AC c (%)	BR ^d (%)	P _{be} ^e (%)	P ₂₀₀ /P _{be} ^f Ratio	Addi. ^g	VMA ^j - VFA ^k %
Mix1_AV5		30		5.6	26.9	4.63	1.4	1% Li ^h	16.1-69
Mix1_AV7		30		5.6	26.9	4.63	1.4	1% Li	16.1-69
Mix2	PG 70-	45	5.02	5.3	42.6	4.38	1.6	1% Li	15.6-68
	22ER							1% Li,	
Mix3		30		5.6	26.9	4.63	1.4	0.68%	16.1-69
								Evm ⁱ	

^a All mixtures had dense gradation and aggregates with a nominal maximum aggregate size of 12.5mm;

- ^b RAP = Reclaimed asphalt pavement added by weight;
- ^c AC = Total asphalt content by weight from volumetric design for 65 gyrations;
- ^d BR = Binder replacement;
- e P_{be} = Effective asphalt content present by weight in the total mix;
- ^f P_{200}/P_{be} = Dust to binder ratio in the mix;
- ^gAddi. = Additive; ^hLi = Lime; ⁱEvm = Evotherm warm mix additive; ^jVMA = Voids in mineral aggregate;
- k VFA = Voids filled with asphalt.

COLLEGE OF ENGINEERING

Semi Circular Bend Test

Semi Circular Bend Test – Oregon spec.

- Loading rate: **0.5 mm/min**
- Output parameters:
- ✓ Fracture energy (G_f)
- ✓ Flexibility Index (FI)

(Ozer et al. 2016)

Hamburg Wheel-Tracking Test (HWTT)

Experimental plan

Specimen	Mix ID ^b	Test	Temperature	Asphalt	Replicates	Total
Type ^a			(°C)	Content (%)		
	Mix1_AV5	SCB	25.0	OBC ^c ,	4	36
	,			- 0.5%,		
	Mix1_AV7	HWTT	50.0	+0.5%	4	36
LMLC	, Mix3					
		SCB	25.0	OBC ^c ,	4	12
	Mix2		50.0	+0.5%,	Λ	10
			50.0	+ 1%	4	12

a LMLC = Laboratory mixed, and laboratory compacted;

 $b Mix1_AV5 - Mix3 = LMLC$ samples from three trial mixes;

c OBC = Optimum binder content obtained from volumetric mix design.

Balanced Mix Design Thresholds for Oregon

Coleri et al. 2020

FI threshold of 6 was recommended for Level 3 mixes while the threshold for Level 4 was selected as 8.

RD threshold of 3mm was recommended for Level 3 mixes while the threshold for Level 4 was selected as 2.5mm

Competition traffic level: 20 year design ESAL of 7,500,000

Level 4 mixes are for high/heavy traffic volumes in Oregon (> 3 million ESALs for a 20-year design) – ODOT Pavement Design Guide, 2019

RESULTS – SCB Flexibility Index

RESULTS – HWTT

RESULTS – Balanced mix design process – Mixture 3 (WMA) results

RESULTS – Volumetric properties for the three mixes based on BMD design binder content

ODOT ACP Manual (2015)

ID ^a	Binder Grade	RAP ^b (%)	AC _{RAP} (%)	AC c (%)	BR ^d (%)	P _{be} ^e (%)	P ₂₀₀ /P _{be} ^f Ratio	VMA ^j - VFA ^k %	Limit
Mix1_AV 5		30		6.00	25.1	4.96	1.30	16.2-69	Air Voids JMF Target ± 1.0% VMA 12.5 - 17.0 (3/4" Mix) 13.5 - 17.0 (1/2" Mix)
Mix1_AV 7	PG 70-	30		6.05	24.9	4.99	1.28	16.2-69	VFA 65 - 75 (3/4" and 1/2" Mix in Level 3 and 4)
Mix2	22ER	45	5.02	6.10	37.0	5.04	1.27	15.4-68	65 - 78 (3/4" and 1/2" Mix in Level 2)
Mix3		30		5.30	28.4	4.37	1.46	16.4-70	70 - 80 (1/2" Mix in Level 1 and 3/8" Mix in Levels 1 - 4) Passing No. 200/Pbe 0.8 - 1.6

^a All mixtures had dense gradation and aggregates with a nominal maximum aggregate size of 12.5mm;

^b RAP = Reclaimed asphalt pavement added by weight;

^c AC = Design BMD asphalt content added by weight;

^d BR = Binder replacement;

 $^{e}P_{be}$ = Effective asphalt content present by weight in the total mix;

^f P_{200}/P_{be} = Dust to binder ratio in the mix;

RESULTS –

	А	В	с	D	E				
1	RAP & RAS Cost Calculator								
2		Mix Desig	n 4						
3	Inputs:								
4	Product	Cost	Unit	Source	Туре				
5	Binder Type 4	\$ 490.00	ton	ODOT	PG 70-22ER				
6	RAP	\$ 20.00	ton						
7	RAS	\$ 40.00	ton						
8	Aggregate	\$ 13.00	ton						
9									
10	Segment Property	Measure	Unit	Source					
11	Geometry	Straight	-	Assumption					
12	Length	1.0	mi	Assumption					
13	Lane Width	12.0	ft	Assumption					
14	Number of Lanes	1.0	each	Assumption					
15	Compacted Layer Thickness	2.0	in	Assumption					
16									
17	Mix Property	Measure	<u>Unit</u>	Source					
18	Compacted Density	145.0	lb/ft^3	NAPA website	2				
19	Target Binder Content	6.0%	by weight	Estimate					
20	RAP Content	30.0%	by weight	Estimate					
21	RAS Content	0.0%	by weight	Estimate					
22	Aggregate Content	<mark>64%</mark>	by weight	Calculation					
23	Binder Content (RAP material)	5.0%	by weight	Estimate					
24	Binder Content (RAS material)	0.0%	by weight	Estimate					
25	Virgin Binder Added	4.5%	by weight	Calculation					
26									
27	Outputs:	Measure	Unit						
28	Section Volume	10560	ft^3 (all lanes))					
29	Section Tonneage	765.6	tons (all lanes)					
30	Mix Cost	\$ 27,844.87	segment						

Cost of materials from previous years production:

• RAP: \$20/ton

Cost Calculation

- Aggregate: \$13/ton
- PG70-22ER binder: \$490/ton
- Evotherm P25: \$70/ton

RESULTS – Life Cycle Cost Analysis

NPVs for all the mixes – Without burner fuel consumption cost

METHODOLOGY -

Life Cycle Assessment (Pavement LCA)

• Define pavement geometry and material inputs (binder content, binder type, WMA/HMA, etc.)

Ø

Ø

Define rehabilitation schedule as maintenance every 20 years until the 60 year lifespan has been reached

• Run software and export global warming markers to excel

	Lanes					
Lane 1 Lift 1	Lane 2 Lift 1	Lane 3 Lift 1				
Lane 1 Lift 2	Lane 2 Lift 2	Lane 3 Lift 2				
Lane 1 Lift 3 Lane 2 Lift 3 Lane 3 Lift 3						
Granular Layer 1						

	Activity T	iming	
	Year After Initial Construction	Expected Lifespan [Years]	Activity Type
42 🖻	20	20	Asphalt Milling
名 🖻	20	20	Asphalt Paving

Model:		B3-R0-BC6				
		Materials and				
Name	Unit	Equipment	Transport	Total		
Global Warming Potential	kg CO2 eq	469,955.33	49818.53946	519773.8722		
Acidification Potential	kg SO2 eq	4,077.53	502.5220314	4580.056696		
HH Particulate	kg PM2.5 eq	247.69	26.1782047	273.8706779		
Eutrophication Potential	kg N eq	173.58	31.19910521	204.7762385		
Ozone Depletion Potential	kg CFC-11 eq	0.00	1.75653E-06	7.08015E-05		
Smog Potential	kg O3 eq	42,615.98	15933.83337	58549.81465		
Total Primary Energy	MJ	30,450,605.29	722007.2163	31172612.51		
Non-Renewable Energy	MJ	29,909,129.90	721703.0524	30630832.96		
Fossil Fuel Consumption	MJ	29,867,573.70	720569.7824	30588143.48		

RESULTS – Life Cycle Assessment (Pavement LCA)

Name	Unit	Typical Mix	RAP30_AVS	RAP45	WMA
Global Warming Potential	kg CO2 eq	928,452.01	695,029.40	674,945.31	668,003.82

RESULTS – Life Cycle Assessment (Pavement LCA)

Name	Unit	Typical Mix	RAP30_AVS	RAP45	WMA
Acidification Potential	kg SO2 eq	8,455.31	6,381.97	6,134.03	6,001.86

RESULTS – Life Cycle Assessment (Pavement LCA)

Name	Unit	Typical Mix	RAP30_AVS	RAP45	WMA
Eutrophication Potential	kg N eq	390.30	303.00	288.52	282.97

Major Conclusions

- Mix3 has cracking resistances significantly higher than all other mixtures;
- It is possible that Mix 3 with warm-mix additives can have better "compactibility";
- The most cost-effective mix is the warm mix asphalt (Mix 3) considering the reduced production temperature;
- Mix 3 (warm-mix) is also the most environmentally friendly mix with lower expected GWP, EP, and AP values for a 60 year analysis period;
- Based on the balanced mix design plots for the four mixes, the required asphalt content for Mix1_AV5, Mix1_AV7, Mix2 and Mix3 are 6.00%, 6.05%, 6.10% and 5.30%.

The mixture with warm-mix additives (Mix 3) is selected as the best asphalt mixture with lowest cost and lowest environmental impact.

Thank You GO BEAVS!

