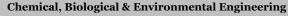

COLLEGE OF ENGINEERING

Introduction

- The main goal of this project is to design a medical grade glove that can be sterilized via autoclave and used multiple times.
- Single use disposable gloves attribute to 30 billion pounds of plastic waste in landfills.
- Medical and laboratory practices could benefit from use of reusable gloves as it would decrease the environmental footprint caused by glove use.
- Made of Santoprene TPV
- Good physical properties and chemical/heat resistance
- Polyolefin based & completely recyclable


PLATEN 1

PLATEN 2

Figure 1: Product dimensions and sizing guide

Prototyping Methods

- Prototype 0: Creation of the glove film by using a heated press Mass = 2.5g ○ T = 200°C
- P = 2000 psi
- Time = 15 minutes
- Prototype 1: Heat degradation in autoclave
- T = 120°C
- Cycle Time = 15 minutes
- Cvcle Tvpe: Drv
- Samples: 0x, 1x, 5x, 10x
- Prototype 2: Permeation test of material by measuring pH changes of DI water
- DMSO (99%)
- Hydrogen Peroxide (30%)
- Hvdrochloric Acid (37%)
- Total Time = 30 minutes
- Prototype 3: Elasticity test of material by measuring the change in length as it was pulled

Reusable TPV Medical Grade Gloves

Emma Chase, Adrianah Dorn, Helena Raposo, Taylor Mottern

		D
al	Production	
	Product Life Cycle	Distribution
C		
	/ • -	Use

Recovery

Figure 3: TPV Glove Life Cycle

Table 1: Simplified Ne	et Product Value					
Model Parameter	Base-Case Value			4 Year P	'lan (\$M)	
Product development	\$1M over 1 year	Sales, machines	Y1	Y2	Y3	Y4
Equipment & Tooling	\$900K over 1/2 year	Sales volume (units/qrtr)	0	250000	287500	330625
Product ramp-up	\$500K over ½ year	Wholesale revenue (\$/unit)	0	60.0	57.0	54.2
Market and Support	\$600K over ½ year	Total revenue millions)	0	37.5	41.0	44.8
Production cost	\$5/unit		-			
Production Overhead	\$200,000	Product development	1	0	0	0
Initial Production Volume	250,000 units/year	Equipment and tooling	0.9	0	0	0
Quarterly Sales profile	Q1 20%, Q2 25%, Q3	Product ramp-up	0.25	0.25	0	0
	25%, Q4 30%	Marketing and Support	0.3	0.75	0.6	0.6
Sales Volume Growth	15%/year, after first year	Production cost	0	12.5	14.38	16.53
Initial Retail Sales Price	\$15/unit (1 unit has 24 gloves)	Total Cost	2.45	13.5	14.976	17.131
Retail price growth	5%/ year, after first year	Period Cash Flow	-2.45	24.0	26.0	27.6
Distributor and Retail Margin	40%	Period Present Value	-2.33	22.80	24.69	26.25
Discount Rate	5%/year	Net Present Value	71.41			

Materi

Figure 5: Different autoclave cycle films (Prototype 1) Figure 2: All prototype setups

Figure 4: Film creation (Prototype 0)

Table 2: Permeation test (Prototype 2) using 2 different chemicals on materials with increased autoclave cycles. Note: Permeation rate cannot exceed 0.1 mg/s-m² per FDA guidelines.

Autoclave cycles	Chemical	Permeation Rate (mg/s-m²)
Not Autoclayed	H ₂ O ₂	0.0158
NOT AUTOCIAVED	HCI	0.0067
Autoclaved 1X	H ₂ O ₂	0.0574
	HCL	0.0065
Autoclaved 5X	H ₂ O ₂	0.0271
	HCL	0.0063
Autoclayed 10X	H ₂ O ₂	0.006
Autoclaved TOX	HCL	0.395

with DI water

reusable medical glove Next Steps

 Decrease overall thickness Increase uniformity

Conclusions

against HCL

- Mix TPV with rubber to increase elasticity
- Increase number of autoclave cycles

No films pass FDA requirements for elongation

• Further testing and refinement of material is

All autoclave cycles pass permeation test against

All autoclave cycles pass permeation test except 10X

required to know if it would be adequate for use as a

- Use universal testing machine
- Different permeation testing method
- Use newer lab gloves for comparison

Acknowledgements

- Adam Higgins and Patrick Geoghegan, OSU
- Paul Nash, HP Inc.
- Dr. Skip Rochefort, OSU
- Bill Snyder, Northwest Rubber Extruders
- Jason Balderstone, OSU
- Ramila Gulieva, OSU

References

- 1. https://www.iso.org/standard/66562.html
- https://rahco-rubber.com/materials/nbr-nitrile-rubber/
- https://www.mecmesin.com/publications/surgical-rubber-glov e-tensile-strength-testing#:~:text=The%20minimum%20accepta
- ble%20tensile%20strength,elongation%20of%20400%20%E2%80%9 3%20750%25.
- 4. https://www.ansell.com/ca/en/products/microflex-l22/pds/Q Hlnk6gzoAdbvia2bs4ZgA
- https://sustainablebrands.com/read/waste-not/how-the-us-fo od-industry-can-divert-65m-lbsof-glove-packaging-waste-immed iatelv
- 6. MAPA_ChemicalChart_Trionic_517_gb-en.pdf

utoclave cycles	Chemical	Permeation Rate (mg/s-m²)
Autoclaved	H ₂ O ₂	0.0158
	HCl	0.0067
oclaved 1X	H ₂ O ₂	0.0574
	HCL	0.0065
oclaved 5X	H ₂ O ₂	0.0271
	HCL	0.0063
claved 10X	H ₂ O ₂	0.006

Table 3: Elasticity % (Prototype 3) with increasing autoclave cycles. Note: Elongation must exceed 400% per FDA guidelines.

	Elongation % At Break
	100%
Not Autoclaved	88%
F	116%
	116%
Autoclaved 1X	76%
	87%
	100%
Autoclaved 5X	70%
	100%
	85%
Autoclaved 10X	82%
Γ	83%
	193%
Nitrile Lab Gloves	176%
(Large)	118%