College of Engineering | School of Chemical, Biological, and Environmental Engineering

HYDROGEL BEAD DEVELOPMENT FOR MICROBIAL CULTURE ENCAPSULATION Alyssa Rogers, Margaret Newell, Teagen Rocheville, Annelise Norkitis, Willow Peterson, and Conor Harris

INTRODUCTION

Groundwater contamination from volatile organic compounds (VOCs) and co-contaminants, such as 1,4-Dioxane (1,4-D), is a widespread issue in the United States

Common remediation techniques (pump and treat) are not sustainable for low permeability zones in the subsurface

Rhodococcus rhodochrous ATCC 21198 is a alkane-oxidizing bacterium capable of degrading some VOCs and 1,4-D Proposal: Create permeable reactive barriers (PRB) with R. rhodochrous ATCC 21198 co-encapsulated by hydrogel beads to biodegrade contaminants occurring in groundwater aquifers

MATERIALS AND METHODS

Polymer Solutions: Polyvinyl Alcohol (PVA), Chitosan, Low Acyl Gellan Gum (LAGG), and Sodium Alginate (NaAlg)

Crosslinkers

Borax, Calcium Chloride, Calcium Lactate, Thermal (temperature), and Sulfuric Acid

Combining Solutions:

Mix the individual solutions together on a magnetic stir plate with the desired weight by volume (w/v)

Bead Creation:

Polymer solution is dropped into a crosslinking solution using a pipette

Drops left in crosslinking solution until total gelation is observed Time tests are performed to tell when total gelation occurs

Main Polymer	% (w/v)	Temperature
PVA	2 - 8	90 C
Chitosan	2	80 C
LAGG	1 - 2.5	60 C
NaAlg	0.5 - 2	25 C

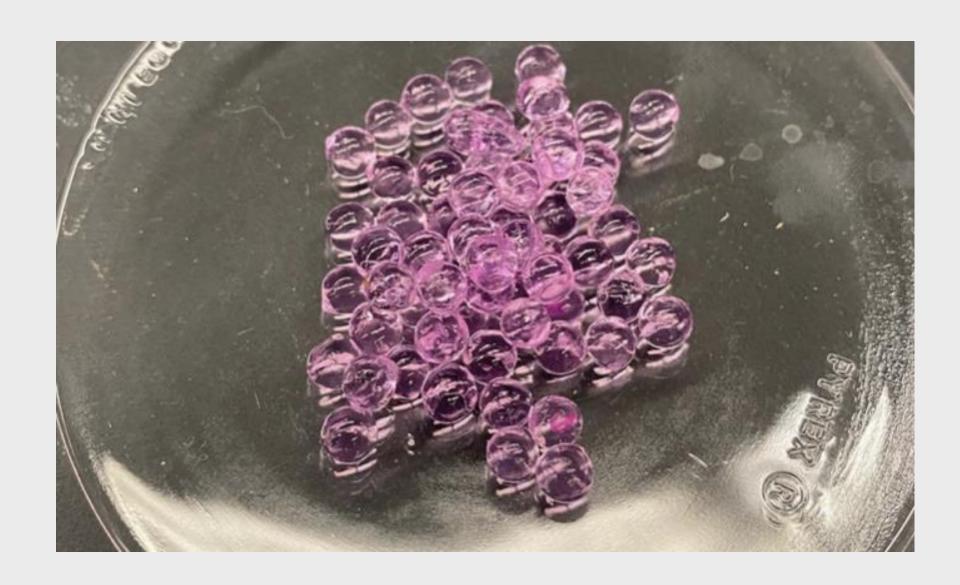
THANK YOU

Researchers:

Mentors:

Dr. Skip Rochefort - School of Conor Harris - Graduate ChemE Chemical, Biological, and Alyssa Rogers - 4th yr BioE Environmental Engineering Margaret Newell - 3rd yr Microbio Dr. Lewis Semprini - School of Willow Peterson - 1st yr BioE Chemical, Biological, and Annelise Norkitis - 1st yr BioE Teagan Rocheville-Higgins - 1st yr BioE Environmental Engineering

Dr. Skip Rochefort and Dr. Lewis Semprini

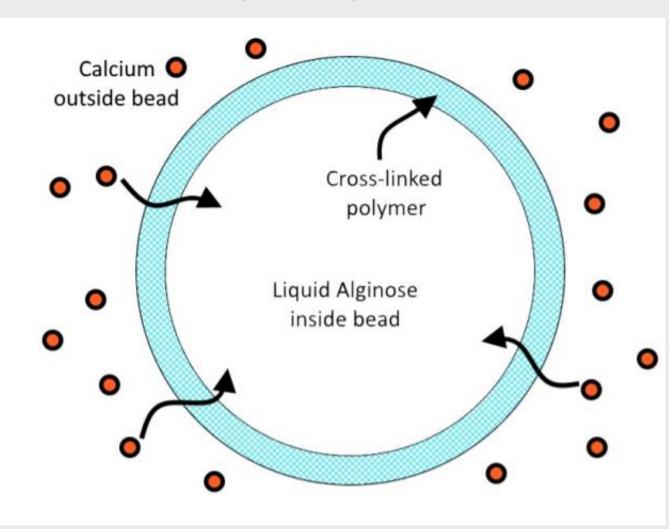


BACKGROUND

Hydrogels are made by crosslinking polymer chai
Physical crosslinking
Chemical crosslinking
Polymers Explored:
Sodium Alginate (NaAlg): structure
Low-Acyl Gellan Gum: stability
Poly-Vinyl Alcohol (PVA): strength and durability
Chitosan: contains antimicrobial properties

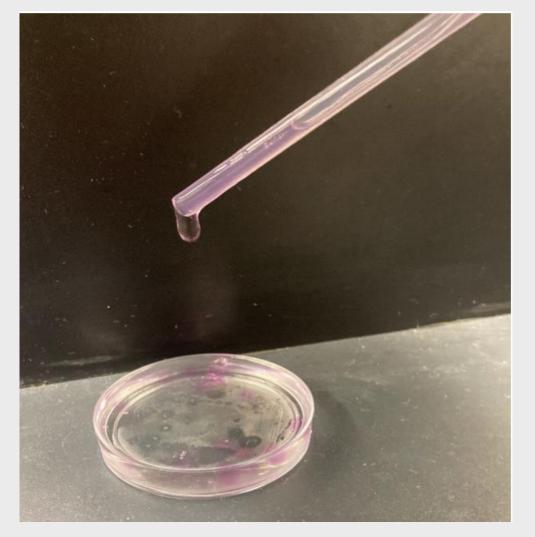
RESULTS

Polymer Combination	% (w/v)	Crosslinker	Properties of Bead formed
PVA	2.0, 4.0, 8.0	Borax	Thick, structureless, gooey
PVA / NaAlg	3.0 / 0.25	Borax / Calcium Chloride	More structure compared to just PVA, precipitate formed prevented crosslinks
PVA	4.0	Calcium Lactate	No gelation
PVA	4.0	Calcium Lactate / Borax	More structure then pure PVA, less precipitate formed
Chitosan	3.6	Thermal	No gelation
Chitosan	4.5	Sulfuric Acid	No gelation
LAGG / Chitosan	2.5 / 0.0099	Calcium Chloride / Thermal	Firm, Round, Very strong
NaAlg / PVA / LAGG	0.50 / 1.3 / 0.33	Calcium Chloride / Thermal	Round, Strong and Uniform beads
NaAlg / PVA / LAGG	0.50 / 1.3 / 0.33	Calcium Lactate	Similar properties to Calcium Chloride but weaker and longer gelation time.
NaAlg / PVA / LAGG	0.50 / 1.3 / 0.33	Calcium Lactate / Borax	Less rigid and weakened structure, compared no beads where PVA was not crosslinked
NaAlg / PVA / LAGG / Chitosan	0.49 / 1.3 / 0.33 / 0.0013	Calcium Chloride / Thermal	Gelation upon mixing LAGG and Chitosan, Unable to bead


chains through

OVERVIEW

Purpose: encapsulate microorganisms in hydrogel beads which degrade contaminants (1,4-dioxane) to treat groundwater


SHORT TERM goal: create durable beads capable providing a sustainable environment for the microorganisms

LONG TERM goal: find the best process to encapsulate the microbes and then scale up the production of the beads

FUTURE WORK

- Moving forward with the NaAlg, PVA, and LAGG polymer solution using the following crosslinking agents
- Cold calcium chloride solution
- Cold calcium lactate solution
- Introduce R. rhodochrous ATC 21198 to hydrogel beads for inspection of growth, degradation, and stability
- -Growth will be monitored and recorded through isobutane uptake test in batch reactors
- -Degradation will be tested via pilot scale bioreactor to emulate a groundwater aquifer
- Mass production of gel beads containing microorganisms possibly through capillary extrusion

