

Oregon State University

Techno-Economic Analysis of a Proposed Nuclear Renewable Hybrid Energy System in Nome, AK

Lucia, Stephanie, Logan, Brandon

Advisors: Dr. Anthony Alberti, Dr. Jordan Cox (NREL)

COLLEGE OF ENGINEERING

School of Nuclear Science and Engineering

Nome's Energy Status^{1,2}

- Isolated microgrid
- Energy resources
 - 2.7 MW wind
 - 5.2 MW diesel
 - Potential 2 MW geothermal
 - Potential 5-10 MW nuclear
- Energy demand
 - 6 MW peak
 - 4 MW average

Alaska map³

2019-20 Nome Energy Statistics⁴

Diesel Generated & Purchased [kWh]	Non-Diesel Generated & Purchased [kWh]	Total [kWh]
29,374,743	2,186,915	31,561,658

Annual Fuel Costs	Annual Non-Fuel Costs	Total
\$4,512,210	\$7,081,890	\$11,594,100

Energy Costs in Perspective

- Residential rate⁴: 41¢/kWh
- Power Cost Equalization (PCE) rate⁴: 19¢/kWh
- PCE Subsidy: 22¢/kWh
- Alaska Housing Finance Corp⁵:
 - Nome, AK average annual energy cost 2.78x national average, 1.81x Alaska avg.

Levelized cost of Energy Comparison⁶

Levelized Cost of Energy Comparison—Unsubsidized Analysis Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances \$150 \$227 Solar PV-Rooftop Residential \$179 Solar PV-Rooftop C&I \$74 Solar PV-Community \$63 \$94 Solar PV-Crystalline Utility Scale \$31 \$42 Renewable Energy Solar PV-Thin Film Utility Scale \$38 \$29 Solar Thermal Tower with Storage \$126 \$156 Geothermal \$59 \$101 \$54 **\$86**⁽²⁾ Wind \$26 Gas Peaking \$151 \$198 Nuclear \$29⁽⁵⁾ \$129 \$198 Conventional (6) \$41(5) Coal \$159 \$65 Gas Combined Cycle \$28(5) \$44 \$73 🔶 \$88(7) \$127⁽⁸⁾ \$0 \$25 \$50 \$75 \$100 \$150 \$175 \$200 \$225 \$250 \$275 \$125 Levelized Cost (\$/MWh)

Motivation

- Find cheaper energy options for Nome
- Advanced nuclear needs to prove its economic competitiveness^{7,8}
- Replace existing diesel with advanced nuclear
 - CO₂ emission goals
 - Nuclear-renewable hybrid energy systems (NRHESs)

Design Objective

- Determine if an NRHES deployed within an existing microgrid in Nome, Alaska is economically competitive with current fossil fuel-based energy generation technologies.
 - If not, determine how economic indicators must change in order for the NHRES to become viable.

Technical Approach

To achieve the objectives of the Techno Economic Analysis, two types of software will be utilized: Renewable Energy Integration and Optimization (REopt), and System Advisor Module (SAM).

REopt:

- Estimate of the Size (MW)
- Dispatch Strategy of the Chosen Technologies

SAM:

 Key economic figures of merit such as Net Present Value(NPV), Levelized Cost Of Energy(LCOE), and internal rate of return(IRR)

Technical Approach (cont.)

$$NPV = \sum_{i=0}^{N} \frac{R_i}{(1+d)^i}$$

 $LCOE = \frac{Sum \ of \ costs \ over \ plants \ lifetime}{Sum \ of \ electrical \ energy \ generated \ over \ plant \ lifetime}$

d=discount rate, R=net cash flow

IRR= annual growth rate for investment

Oregon State University College of Engineering

Mock Excel Inputs

Inputs	Nuclear
Size	1
Capacity Factor	0.92
OCC	6200
Fixed O&M	101
Variable O&M	2
Fuel Costs	7
Wholesale Electricity Price	60
Discount Rate	0.04
Plant Lifetime	80
Outputs	
Capital Cost (C_o)	-\$6,200,000
Year One Cash Flo	w
Year One Power Production	8059.2
Year One Income	\$483,552
Year One Fixed Expenditures	-\$101
Year One Variable Expenditures	-\$16,118.40
Year One Fuel Expenditures	-\$56,414.40
Year One Net Cash Flow	\$410,918
NPV (Capital Cost * SUM of years)	-\$4,708,410
Payback Period	42
Internal Rate of Return	
LCOE	82

REopt

- Solar
- Wind
- Wind & Diesel
- Wind, Diesel, Battery
- Nuclear

Site Location	-	Bethel, AK	
Analysis Focus	Financial/Resilence	Financial	
Annual Energy Cost	\$/kWh	0.22	
Demand Cost	\$/kW/month	10	
Net Metering Size Limit	kW	0.1	
Type of Building Simulated	-	Midrise Apartment	
Annual Energy Consumption	kWh	32475000	
Load Adjustment	%	110	
Adjusted Energy Consumption	kWh	36019500	
Discount Rate	%	2	
Electricity Escalation Rate	%	2	
Annual Grid Emissions Factor	lbs CO2/ kWh	1.11	
Solar Inputs			
System Capital Cost	\$/kW	2400	
Outputs			
Estimated Solar Size	kW	10158	
Potential Life Savings	\$	9,345,868	

Load Profile⁹

REopt Preliminary Results - Solar only

Preliminary Results - Solar (2%)

REopt Preliminary Results - Wind only

Next Steps

- Adjust the load profile to best fit Nome's.
- Combine the different renewables as well as nuclear into the REopt runs.
- Carry over REopt results and input into SAM.

Conclusion

- Noticeable trends between the discount rate and the life savings and size.
- A successful project will demonstrate that an NRHES is viable or the change needed in economic indicators for viability to occur.
- This work is important for the future of nuclear energy and for helping communities afford clean energy.

References

- 1. Alaska Center for Energy and Power (2015, June). Nome Energy Storage and Geothermal Exploration. Retrieved March 18, 2021, from https://acep.uaf.edu/media/158030/Nome-Energy-Storage-6-26-15.pdf
- 2. J. B. VanderMeer, & M. Mueller-Stoffels (2014). *Wind-Geothermal-Diesel Hybrid Micro-Grid Development: A Technical Assessment for Nome, AK* (Doctoral dissertation, M. Sc. Thesis, University of Oldenburg).
- 3. Fairbanks Daily News (2019, December). Nome map. Retrieved March 19, 2021, from http://www.newsminer.com/nome-map/pdf_b45bc5a6-2450-11ea-b214-cbc48cc5ba0e.html
- Alaska Energy Authority (2021, March). Power Cost Equalization Program Statistical Report. Retrieved March 18, 2021, from http://www.akenergyauthority.org/Portals/0/About/Board%20Meetings/Documents/2020/FY20%20PCE%20Statistical%20Report%20 -%20Community%20Version.pdf
- 5. Alaska Housing Financing Corporation (2017). 2017 Alaska Housing Assessment. Retrieved March 18, 2021, from https://www.ahfc.us/application/files/7115/1510/4572/Final_-_Nome_Census_Area_Summary.pdf
- 6. Lazard Ltd (2020, October). LAZARD'S LEVELIZED COST OF ENERGY ANALYSIS VERSION 14.0. Retrieved March 18, 2021, from https://www.lazard.com/perspective/lcoe2020
- 7. S. Bilbao y León. *Global Perspectives On The Present And The Future Of Nuclear Energy.* https://oregonstate.instructure.com/courses/1796051/external_tools/161494. Accessed Feb. 17, 2021.
- 8. J. Buongiorno et al. *The Future of Nuclear Energy in a Carbon-Constrained World: An Interdisciplinary MIT Study.* Tech. rep. 9. 77 Massachusetts Ave, Cambridge, MA 02139: Massachusetts Institute of Technology, MIT Energy Initiative, Sept. 2018.
- 9. C. Pike, & N. Green (2017, November). *Nome Wind-Diesel System Overview*. Retrieved March 18, 2021, from https://acep.uaf.edu/media/288908/Pike-Green_Nome_Wind-Diesel_Final.pdf

Questions?

Appendix A: Three Day Load Profile

Appendix B: Sample REopt Output Deck

10000 kW

Appendix B: Sample REopt Output Deck

	Business As Usual 🧿	Financial 😧				
System Size						
PV Size (2)	0 kW	10,158 kW				
Energy Production and Fuel Use						
PV Energy Production @	0 kWh	7,142,804 kWh				
Original Average Annual Energy Supplied from Grid 💡	32,745,000 kWh	N/A				
Adjusted Average Annual Energy Supplied from Grid @	36,019,500 kWh	29,977,688 kWh				
Summary Ge	Summary Generation Metrics					
Annual Energy from Renewable Energy 🥝	N/A	20%				
CO ₂ Emissions						
On-Site Fuels CO ₂ Emissions in Year 1 (2)	0 tons	0 tons				
Grid Electricity CO ₂ Emissions in Year 1 0	19,991 tons	16,638 tons				
Total CO ₂ Emissions in Year 1 (2)	19,991 tons	16,638 tons				
Percent Reduction in CO ₂ Emissions from BAU 💡	N/A	17%				

Appendix B: Sample REopt Output Deck

Year 1 Utility Electricity C	ost – Before Tax	
Utility Energy Cost 😮	\$7,924,290	\$6,595,091
Utility Demand Cost 🔞	\$852,209	\$813,303
Utility Fixed Cost @	\$0	\$0
Utility Minimum Cost Adder 😧	\$0	\$0
Total Year 1 Utility Cost - Before Tax 😧	\$8,776,499	\$7,408,395
Life Cycle Utility Electricity C	Cost — After Tax 💡	
Utility Energy Cost @	\$146,599,365	\$122,009,191
Utility Demand Cost 😮	\$15,765,858	\$15,046,112
Utility Fixed Cost @	\$0	\$0
Utility Minimum Cost Adder 🔞	\$0	\$0
Total Life Cycle Utility Cost - After Tax 😮	\$162,365,223	\$137,055,302

Appendix C: Regression Outputs - Solar Size

Linear regression model: y \sim 1 + x1

Estimated	Coeffic	ients:			
		Estimate	SE	tStat	pValue
(Inter	(cept)	11775	108.29	108.74	$4.9753 \mathrm{e}{-18}$
x1	22	-940.12	20.284	-46.347	$5.7744 \mathrm{e}{-14}$

Number of observations: 13, Error degrees of freedom: 11 Root Mean Squared Error: 137 R-squared: 0.995, Adjusted R-Squared: 0.994 F-statistic vs. constant model: 2.15e+03, p-value = 5.77e-14>>

Appendix C: Regression Outputs - Wind Size

Linear regression model: y $\tilde{y} + x1$

Estimated Coefficients:

	Estimate	SE	tStat	\mathbf{pValue}
(Intercept)	7874.8	59.94	131.38	$6.2209 \mathrm{e}{-19}$
x1	-324.54	11.228	-28.905	9.9887 e - 12

Number of observations: 13, Error degrees of freedom: 11 Root Mean Squared Error: 75.7 R-squared: 0.987, Adjusted R-Squared: 0.986 F-statistic vs. constant model: 835, p-value = 9.99e-12>>