COLLEGE OF ENGINEERING

Background

- Radionuclides are essential in medicine
- Demand for Lutetium (¹⁷⁷Lu) is rising due to its versatility in imaging and cancer treatment
- It is particularly useful for digestive cancer treatment and palliative bone treatment

- Most of the production facilities are outside of the US as seen in the map below • Causes variability in price and availability
- Domestic production is needed
- Stabilize the supply chain to reduce the cost of treatments and increases availability.
- o ¹⁷⁷Lu has a short half-life (6.64 days), making it important to reduce the transportation time post production

Pros and Cons

Direct Method	Indirect Method
High cross section (2090 b)	Low cross section (2.85 b)
Limited handling and processing	Complicated chemical processing
Long irradiation times (5-30 days)	Long irradiation times (10-40 days)
Low natural abundance of ¹⁷⁶ Lu (2.6%)	Low natural abundance of ¹⁷⁶ Yb (12.76%)
Production of ^{177m} Lu	Negligible production of ^{177m} Lu
¹⁷⁶ Lu & ¹⁷⁷ Lu feasibly inseparable	¹⁷⁶ Yb & ¹⁷⁷ Lu chemically separable
Max specific activity proportional to flux	Specific activity independent of flux

Lutetium-177 Production in the Oregon State TRIGA Reactor

Brianna Ashing, Anneli Brackbill, Brooke Konstanczer, Jordan Northrop Mentor: Dr. Alena Paulenova

Purpose: The purpose of this project is to investigate the feasibility of the production of the radionuclide ¹⁷⁷Lu in the OSTR for use as a nuclear therapeutic treatment and diagnostic tool.

Irradiation Setup

- Oregon State TRIGA Reactor In-Core Irradiation Tube (ICIT)
- Thermal Flux: $1.1*10^{13}$ n/cm²/s
- Epithermal Flux: $1.4*10^{12}$ n/cm²/s
- F12 core position
- 3.175 cm diameter aluminum tube
- Sample: Yb₂O₂
 - Powder is placed in a quartz ampoule and flame-sealed Ampoule is about 8 cm long with 6mm outer diameter
 - Ampoule is enclosed in outer aluminum irradiation tube
 - 10 cm long with a 2.2 cm diameter

Left: TRIGA Core Map, ICIT facility (F12) Right: Top: Example of irradiation vial with small inner quartz ampoule Bottom: Example OSTR outer aluminum *irradiation tube with the top and bottom* separated

Processing

Extraction Chromatography

- Utilizes a long column filled with a stationary phase (resin) and a mobile phase
- Mobile phase flows between resin particles
- <u>Basis of separation</u>: different affinity to resin surface between ¹⁷⁷Lu and ¹⁷⁶Yb
- ¹⁷⁷Lu is eluted first
- ¹⁷⁶Yb follows much later
- Optimization depends on:
 - Resin selection
- Composition of acidic solution of the target
- <u>Purity:</u>
- Depends on the number of passes through the columns
- >90% separation efficiency preferred
- <u>Necessary tools</u>:
- Hot cell due to high doses

Calculations and Analysis

• MATLAB codes were written to calculate results such as the yield and specific activity as a function of irradiation time. • The calculations for the **direct method** show that the maximum achievable activity of irradiated target is too low for therapeutic use as seen in the graph below

• it requires a much higher flux value than possible at the OSTR. Burn up corrected Direct Method

Direct method specific activity for different thermal fluxes. Blue = OSTR capability

• The **indirect method** specific activity is independent of the flux as Yb and Lu are separable, so this method was chosen for further analysis.

¹⁷⁷ Lu Production							
Irradiation time [d]	5	10	15	20	25	30	
Yield of ¹⁷⁷ Lu [µg per gram of target]	12.1	19.4	23.7	26.3	27.8	28.7	
Example with an initial target mass of 10g							
Irradiation time [d]	5	10	15	20	25	30	
Yield [mg] of ¹⁷⁷ Lu	0.12	0.19	0.24	0.26	0.28	0.29	
Activity [Ci]	13.4	21.5	26.3	29.2	30.8	31.8	

• One therapeutic dose is 200 mCi of ¹⁷⁷Lu, which is applied to 20 ml of solution with the final concentration of 10 mCi/ml. • For a 15 day irradiation period combined with seven days of decay, 0.1752 grams of 96% enriched ¹⁷⁶Yb₂O₃ is required to achieve an activity of 200 mCi.

• # of doses produced =10 [g]/0.1752 [g/dose]= 57 doses

Decay of the Lu-177: 10g sample of Yb-176 after a 15 day irradiation period

Time (Days)

15

10

10g of Yb-176 removed after a 15 day irradiation

15 day at \$5

Cost Total I Opera

Sel

Profi

*Numbers calculated with 10 g of 96% enriched 176 Yb₂O₃ irradiated for 15 days with seven days of decay and a 90% separation efficiency. This does not include the cost of processing or radiolabeling and is subject to change.

• For one dose (200 mCi of ¹⁷⁷Lu) to be produced, 0.1752 grams of 96% enriched ¹⁷⁶Yb₂O₃ is required and irradiated in the ICIT for 15 days.

• Processing, radiolabeling, and additional irradiations trials will incur further expenses.

Future Research

As the process of producing ¹⁷⁷Lu is relatively new, we have many recommendations for future research.

Projected Costs and Profit

	-			
g ¹⁷⁶ Yb	Buylsotope.com (\$16,220/g of 97.7% ¹⁷⁶ Yb): \$162,200	American Elements (\$19,630/g of 96% ¹⁷⁶ Yb): \$196,300		
reactor run 780.83/day	\$86,700	\$86,700		
of Hot Cell	\$360,000	\$360,000		
laterial and ional Costs	\$608,900	\$643,000		
ng Price: \$5	6,092.28/dose with 57.07 doses	\$3,201,600		
Costs(96% enriched)	\$643,000		
t* for one 15	day irradiation with 10 g	\$2,558,600		

Conclusions

• Production of ¹⁷⁷Lu **is possible** in the OSTR through the indirect production route.

¹⁷⁶ Yb	<u>(n, γ)</u>	¹⁷⁷ Yb	β- - -	¹⁷⁷ Lu
		1.911h	63 × 1	6.64d

• Assuming 90% efficiency for Lu/Yb separation, the number of the doses that can be produced by irradiation of a 10 gram target may reach up to **57 doses** after seven days of decay. • Based on our calculations, the estimated total costs would be \$196,300 for 10 grams of 96% enriched ¹⁷⁶Yb (supplied by American Elements) and \$86,700 in operational expenses for one irradiation trial, totaling \$643,000 to produce 57 doses of ¹⁷⁷Lu dotatate of 10 mCi/ml concentration.

• Expand the computational analysis used, or use a radiation transport code to re-analyze feasibility.

• Investigate optimizations for the irradiation capsule and setup. • Expand research on extraction chromatography and increase efficiency by testing the resins used in separation.

 Research reprocessing methods to recover the leftover ¹⁷⁶Yb material to form a new target.

• Identify radiolabeling capabilities at OSU or outsource a radiolabeling facility.

Pictured left to right: Brooke Konstanczer, Anneli Brackbill, Brianna Ashing, Jordan Northrop