COLLEGE OF ENGINEERING

Requirements

- The APOP team will modify a JetCat P100-RX to increase the thrust-to-weight (T/W) ratio by at least 60%
- The T/W ratio increase will not decrease the stock thrust specific fuel consumption (TSFC) by any more than 20%.
- The final results will be estimated with a cycle analysis model that is accurate within 20% of actual values.

Design Solution

- Multi-stage axial compressor
- Optimized converging exhaust nozzle
- Fuel heat exchanger
- Materials change and mass reduction

CAD model of redesigned nozzle design

Photo of compressor components

Mechanical, Industrial, and Manufacturing Engineering

Aerospace Propulsion Outreach Program: A Gas Turbine Engine Challenge

An Annual Challenge

The Air Force Research Laboratory (AFRL) issues a challenge to participating universities each year to modify a small (22.5 lbf thrust class) engine. Past challenges have included designing an afterburner and developing a Thrust Vectoring Control (TVC) system.

This year's challenge is to increase the thrust-to-weight ratio by at least 60% while not decreasing the thrust specific fuel consumption by more than 20%.

Testing

The thrust of the engine was measured using an S-type load cell taking continuous measurements throughout test runs.

Stock load measurements were compared to those of the multi-stage axial compressor, converging nozzle, and heat exchanger data to determine thrust increases.

Photo of prototype nozzle assembly mounted to engine

MIME.305

TEAM MEMBERS Karim Amer Nick Gruenefeldt Peter Lake

Zachary Lovell Alec Schuler Sam Summerville

TECHNICAL ADVISOR(S)

Dr. David Blunck Dr. Sarah Oman

PROJECT SPONSOR

Air Force Research Laboratory

Project status

The prototype nozzle and heat exchanger have been manufactured and tested. The final design for the nozzle has been ordered from a local machine shop in Corvallis. Once this nozzle arrives, it will be tested. At this final stage, the multi-stage compressor will be tested in tandem with the nozzle. These final tests will produce the most optimal T/W values.

STATE