JUNO: Automated Creation of Vulnerable Practice
Networks

Casey Colley
School of EECS
Oregon State University
Corvallis, OR, USA
colleyc @oregonstate.edu

Carter MacNab
School of EECS
Oregon State University
Corvallis, OR, USA
macnabc @oregonstate.edu

Abstract—Cybersecurity games have proven to be successful as
a practical learning tool for students and professionals, as shown
in many Capture-The-Flag (CTF) and Cyber-Defense competi-
tions (CDC). However, the infrastructure required for Cyber-
Defense competitions is more intricate than other cybersecurity
games, such as Jeopardy-style Capture-The-Flag competitions,
as it necessitates a network of computers with interconnected
services and various vulnerabilities. To address this challenge,
we develop JUNO, a work-in-progress framework for building
infrastructure for Cyber-Defense competitions. JUNO is designed
to automate the creation of virtual networks and rapidly deploy
them for defensive cybersecurity games. The system comprises
a core program that can generate vulnerable machine images
and additional microservices to host these in virtual machines
automatically.

Index Terms—cyberdefense competitions, practice networks,
blue team, red team

I. INTRODUCTION

Jeopardy-style Capture-The-Flag competitions (CTFs) [1]
are the most prevalent cybersecurity games due to their effec-
tiveness in teaching specific exploitation techniques, and their
compatibility with large-scale deployment through technologies
such as Kubernetes [2]. The challenges in CTFs are simple,
ephemeral, and independent of one another.

In contrast, Cyber-Defense competitions (CDCs) [3] are less
frequently hosted and more intricate. Rather than singular
challenges, CDCs are comprised of a network of several
computers that host common business services such as web-
sites, mail servers, and Domain Controllers, which are often
interdependent. CDCs teach students system administration,
log analysis, memory forensics, and incident response rather
than exploitation. Consequently, CDCs have the potential
to encompass a significantly wider range of topics within
cybersecurity education.

Teams that wish to practice attacking or defending such
a network must first design it themselves and verify the
intended vulnerabilities are exploitable, which is time and effort-

Alex Marx
School of EECS
Oregon State University
Corvallis, OR, USA
marxal @oregonstate.edu

Arian Ghorbani
School of EECS
Oregon State University
Corvallis, OR, USA
ghorbana@oregonstate.edu

Yeongjin Jang
School of EECS
Oregon State University
Corvallis, OR, USA
jangye@oregonstate.edu

intensive. As a result, the team becomes intimately familiar
with the network, and the process of exploring an unknown
network for indicators of compromise (IOC) to remediate and
vulnerabilities to patch becomes less effective at teaching
these skills. Defensive teams require a separate, dedicated
misconfiguration team to design these practice networks, but
that is not always possible for smaller collegiate cybersecurity
clubs or classes.

JUNO was designed to be the misconfiguration team for these
defensive teams. At the team’s request, JUNO will generate
a network of machine configurations with a semi-random
selection of security liabilities that is automatically deployed
on a hypervisor. Teams can then access this virtualized network
to begin practicing. By automating the set-up requirement, the
goal of JUNO is that teams can reduce the amount of time that
it takes to create a practice network, preserve unfamiliarity with
the network, and focus their efforts instead on strengthening
their cyberdefense skills.

Here, we design JUNO to function as the automatic miscon-
figuration team for defensive teams. Upon the team’s request,
JuNoO will produce a network of machine configurations with
semi-randomly selected security vulnerabilities and misconfig-
urations that will be automatically deployed on a hypervisor.
Teams can then access this virtualized network to commence
practice sessions. JUNO’s purpose is to automate the set-up
requirement, thereby reducing the time required to create a
practice network. The system is designed to help teams maintain
unfamiliarity with the network, allowing them to concentrate
on strengthening their cyber defense skills.

II. ARCHITECTURE

JUNO comprises three main design components, which are
as follows: 1) the Environment Architect, 2) the Hypervisor,
and 3) the Identity Management Server.

Figure 1 illustrates how components are connected each
other in a nutshell.



Identity Management

HTTP p Manages: b - —
Main Public Interface . Games Sends vulnerability
. Pl settings and requests
ayers environment
SSH _ « Players' access to the

Sends Wireguard keys virtualized networks

T T

linstructs hypervisor to

Icreate new child process

ffor a new game

1 |

] .

' Hypervisor |
¥
LI

Deploys user's
Iereguard keys

Player's Client VM

Environment Architect

Listening Parent * .

Wireguard o ’ g
g P Virtualizing Child A e = = = -
o Sends generated
environment for

hypervisor to deploy

Virtualizing Child <&°

Fig. 1: An architecture diagram of JUNO.

A. Environment Architect

The Environment Architect is responsible for generating
network configurations. Its primary function is to receive game
requests, along with specific vulnerability settings, from the
Identity Management server. It selects machine images and
generates misconfiguration scripts for a network consisting of
6-7 computers per game and sends them to the Hypervisor for
deployment (number of computers can be adjusted in scale

based on the preferred game size, say, up to 100+ computers).

To generate these misconfiguration scripts, the Environment
Architect utilizes a collection of modular cloud-init settings
and maintains a database that tracks the dependencies of
each script. Additionally, the Environment Architect can be
configured to include a hypervisor and create the final virtual
hard disk, instead of offloading the task to the Hypervisor.

B. Hypervisor

The Hypervisor is responsible for securely deploying the
computer images that the Environment Architect provides in
an isolated environment. Upon receiving a network to deploy, a

parent process listens for the request and creates a child process.

The child process provisions virtual machines (VMs) as needed,
installs the machine image, and runs the misconfiguration script
via cloud-init. An additional VM is established with a VPN
server to manage access to the network. The Hypervisor is
KVM-based [4] and currently fulfilled by QEMU [5]. Since
JUNO was designed with collegiate cybersecurity clubs in
mind, it is expected to be deployed on university servers.
Penetration testers may also wish to utilize a worm, active
malware, or another similarly destructive technique. As a
result, it is essential that malicious activity taking place inside
the virtualized network are unable to escape the hypervisor
or the network, inspired by academic work GQ [6]. As the
Hypervisor’s emulation requirements are minimal, the attack
surface for hypervisor escape can be reduced by avoiding the

use of QEMU, which is a sizable project that has a huge trusted
computing base (TCB). In the future, QEMU will be replaced
by a different hypervisor.

C. Identity Management

The Identity Management Server, which serves as the primary
interface of the system, consists of a website and a database.
The server allows users to request games and manage the keys
utilized to access game networks. When a user requests a
game, the Identity Management Server sends a request to the
Environment Architect, which includes the specified settings.

The website component of the Identity Management Server
enables users to access the system’s primary features, including
game requests and key management. The database component
of the Identity Management server stores user data and
configuration settings, allowing for quick and easy retrieval
when needed.

Upon receiving a game request, the Identity Management
server sends a request to the Environment Architect, which
contains the necessary specifications for game setup. By facili-
tating communication between the user and the Environment
Architect, the Identity Management server streamlines the game
request process, enabling users to rapidly obtain customized
game environments that suit their needs.

III. LIMITATIONS AND IMPROVEMENTS

By automatically generating misconfigurations, the resulting
practice environment lacks the coherence and personalization
of a human-designed network, which teams would typically
encounter during competition. Nonetheless, the authors consider
this an acceptable limitation (except for one scenario) because
the lack of personalization does not diminish teams’ ability to
utilize the networks for defensive practice.

The one exception that will be enhanced in future iterations
is the random generation of websites as services in practice
networks. Web security is essential in Cyber-Defense practice
networks, and websites created for the purposes of CDC
networks require their own bespoke design. During competition,
student teams are expected to examine their websites and
patch vulnerabilities in the source code while safeguarding the
rest of the network. The authors anticipate that these changes
would necessitate additional redesign of how the Environment
Architect generates networks, but it is still a necessary step to
undertake.

These bespoke services that teams are expected to inspect
and patch mid-competition also resembles the type of ser-
vices that are featured in Attack & Defense CTFs, such as
DEF CON CTF Finals [7]. When the Environment Architect is
able to generate bespoke websites, the authors expect it would
be able to generate various other types of services and can be
configured to help teams practice for Attack & Defense CTFs.

Finally, when the project began, the authors were unfamiliar
with Rust [8] and opted to develop the system’s components in
C. Going forward, the components should be rewritten in Rust
to reduce the likelihood of memory corruption vulnerabilities.



(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

REFERENCES

C. Eagle and J. L. Clark, “Capture-the-flag: Learning computer security
under fire,” Naval Postgraduate School Monterey CA, Tech. Rep., 2004.

T. Kubernetes, “Kubernetes,” Kubernetes. Retrieved May, vol. 24, p. 2019,
2019.

A. Conklin, “Cyber defense competitions and information security educa-
tion: An active learning solution for a capstone course,” in Proceedings
of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06), vol. 9. IEEE, 2006, pp. 220b—220b.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the linux
virtual machine monitor,” in Proceedings of the Linux symposium, vol. 1,
no. 8. Ottawa, Ontorio, Canada, 2007, pp. 225-230.

F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
annual technical conference, FREENIX Track, vol. 41. California, USA,
2005, p. 46.

C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson, “Gq: Practical
containment for measuring modern malware systems,” in Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement conference,
2011, pp. 397-412.

C. Cowan, S. Arnold, S. Beattie, C. Wright, and J. Viega, “Defcon capture
the flag: Defending vulnerable code from intense attack,” in Proceedings
DARPA Information Survivability Conference and Exposition, vol. 1. 1EEE,
2003, pp. 120-129.

N. D. Matsakis and F. S. Klock, “The rust language,” ACM SIGAda Ada
Letters, vol. 34, no. 3, pp. 103-104, 2014.



	Introduction
	Architecture
	Environment Architect
	Hypervisor
	Identity Management

	Limitations and Improvements

