
CS CAPSTONE PROJECT ARCHIVE DOCUMENTATION
MAY 29, 2020

AUTOMATE THE SETTINGS THAT CONTROL A
MILLION-DOLLAR PRINTING PRESS

PREPARED FOR

HP, INC
PIETER VAN ZEE

PREPARED BY

GROUP62
PROPRIETORS OF THE PRESS

KUAN-YU LAI
COLE JONES

Abstract

During the 2019-2020 school year, our Capstone group created a web application for HP that uses a rule-based decision
engine to provide users a starting point for determining the optimal settings for an industrial printing press for a given print job. This
document is a compilation of all of the documents that were created during the year, as well as blog posts and conclusions from team
members, and feedback from peers from the design and code reviews. The web application we created is planned to be deployed on
an HP site so that users around the world may use it.

1

CONTENTS

1 Forward 6

2 Introduction to Project 6

2.1 Who Requested It? . 6

2.2 Why Was It Requested? . 6

2.3 What Is Its Importance? . 6

2.4 Who Was/Were Your Client(s)? . 6

2.5 Who Are the Members of Your Team? . 6

2.6 What Were Their Roles? . 6

2.7 What Was the Role of the Clients? . 7

2.8 How Did the Changes in Spring Term Affect Your Deliverables? . 7

2.9 How Do You Recommend the Next Team Use This Final Documentation to Pick Up Where You Left

Off? . 7

3 Requirements Document 8

3.1 Change Table . 9

3.2 Overview . 9

3.3 Glossary of Terms . 9

3.4 Use Cases . 10

3.4.1 Implementation of Decision-Making Engine . 10

3.4.2 Use of Decision-Making Engine in Pre-Press Check . 10

3.4.3 Use of Decision-Making Engine to Generate Job Settings for Job Ticket 10

3.4.4 Use of Decision-Displaying Current Operating Task and Progress 10

3.4.5 Use of GUI to Queue Jobs . 10

3.4.6 Use of API Calls to Queue Jobs . 11

3.4.7 Selection of Rules for Engine . 11

3.5 Tools & Applications . 11

3.5.1 Existing Internal Tool . 11

3.5.2 Decision-Making Engine . 11

3.5.3 GUI . 11

3.5.4 API . 12

3.5.5 Database . 12

3.6 Gantt Chart . 12

3.6.1 Gantt Chart Analysis . 12

4 Design Document 13

4.1 Change Table . 14

4.2 Overview . 14

4.2.1 Scope . 14

2

4.2.2 Purpose . 14

4.2.3 Description of stakeholders . 14

4.3 Glossary of Terms . 14

4.4 Timeline . 15

4.5 Rules Engine . 15

4.5.1 Description of Design . 15

4.5.2 Design Viewpoints . 15

4.5.2.1 Context . 15

4.5.2.2 Composition . 15

4.5.2.3 Dependency . 16

4.5.2.4 Interaction . 16

4.5.3 Design Rationale . 16

4.5.4 Design Implementation . 16

4.6 Database . 16

4.6.1 Description of Design . 16

4.6.2 Design Viewpoints . 17

4.6.2.1 Context . 17

4.6.2.2 Composition . 17

4.6.2.3 Dependency . 17

4.6.2.4 Interaction . 17

4.6.3 Design Rationale . 17

4.6.4 Design Implementation . 18

4.7 Website . 18

4.7.1 Description of Design . 18

4.7.2 Design Viewpoints . 18

4.7.2.1 Context . 18

4.7.2.2 Composition . 18

4.7.2.3 Dependency . 18

4.7.2.4 Interaction . 19

4.7.3 Design Rationale . 19

4.7.4 Design Implementation . 19

4.8 Conclusion . 19

4.9 References . 20

5 Tech Review Document - Kuan-Yu Lai 21

5.1 Introduction . 22

5.2 Piece1: Analysis of input data for generation of outputs . 22

5.2.1 Drools . 22

5.2.2 Google Cloud Platform . 22

5.2.3 TensorFlow . 22

3

5.3 Piece2: Hosting the feature on the web . 23

5.3.1 Oregon State University engineering server . 23

5.3.2 Heroku . 23

5.3.3 Amazon Web Services . 23

5.4 Piece3: Storage of outputs and profiles . 23

5.4.1 MYSQL . 24

5.4.2 MongoDB . 24

5.4.3 Redis . 24

5.5 Conclusion . 24

5.6 References . 24

6 Tech Review Document - Cole Jones 26

6.1 Introduction . 27

6.2 Piece 1: Capture of Input Data from User . 27

6.2.1 User Interface . 27

6.2.2 Email . 27

6.2.3 Hot Folder . 28

6.3 Piece 2: Tool Interaction Using API . 28

6.3.1 REST . 28

6.3.2 SOAP . 28

6.3.3 JSON-RPC . 29

6.4 Piece 3: Presentation of Tool to User . 29

6.4.1 ReactJS . 29

6.4.2 Bootstrap . 30

6.4.3 Angular . 30

6.5 Conclusion . 30

6.6 References . 31

7 Blog Posts 32

7.1 Fall Term . 32

7.1.1 Cole Jones . 32

7.1.2 Kuan-Yu Lai . 33

7.2 Winter term . 34

7.2.1 Cole Jones . 34

7.2.2 Kuan-Yu Lai . 36

8 Final Poster 37

9 Project Documentation 38

9.1 How does the project work? . 38

9.2 Install Guide How to run it . 38

4

9.2.1 Front-End . 39

9.2.2 Back-End . 39

9.2.2.1 SJA Engine . 39

9.2.2.2 Rules Engine . 40

9.3 User Guide . 40

9.4 API Documentation . 41

9.4.1 SJA Engine . 41

9.4.2 Rules Engine . 41

10 Recommended Technical Resources for Learning More 42

10.1 Helpful Websites . 42

10.2 Helpful Books . 42

10.3 Helpful People . 42

11 Conclusions and Reflections 43

11.1 What technical information did you learn? . 43

11.1.1 Cole Jones . 43

11.1.2 Kuan-Yu Lai . 43

11.2 What non-technical information did you learn? . 43

11.2.1 Cole Jones . 43

11.2.2 Kuan-Yu Lai . 43

11.3 What have you learned about project work? . 43

11.3.1 Cole Jones . 43

11.3.2 Kuan-Yu Lai . 43

11.4 What have you learned about project management? . 44

11.4.1 Cole Jones . 44

11.4.2 Kuan-Yu Lai . 44

11.5 What have you learned about working in teams? . 44

11.5.1 Cole Jones . 44

11.5.2 Kuan-Yu Lai . 44

11.6 If you could do it all over, what would you do differently? . 44

11.6.1 Cole Jones . 44

11.6.2 Kuan-Yu Lai . 44

Appendix A: Essential Code Listings 45

A.1 Front-End . 45

A.2 Back-End . 48

Appendix B: Website Photos 49

5

Appendix C: Response to Code Review Criticisms 51

C.1 Front-End . 51

C.2 Back-End . 52

LIST OF FIGURES

1 Requirements Document Gantt Chart . 12

2 Design Document Gantt Chart . 15

3 Final Poster for Engineering Expo . 37

4 Project workflow . 38

5 The function that fetches the paper database from the back-end . 45

6 The JSX that generates a table with click-based row selection . 45

7 The function that handles POSTing the job to the back-end . 46

8 An example of the layout of a form item . 47

9 The function that sends the user’s PDF(s) to the back-end to analyze and obtain a maximum ink coverage

value . 47

10 The function parse the input from the front-end into what rules engine wants 48

11 The function handle the evaluation of the uploaded PDF file . 48

12 Main page of the SJA website . 49

13 Job page of the SJA website . 49

14 Job results page of the SJA website . 50

15 History page of the SJA website . 50

6

1 FORWARD

Release 1.0 of this project is functionally complete. The only thing that still needs to be implemented is the logging

feature in both of the back-end servers. The J-easy Rules Engine already has a logging feature, but it still needs to be

adjusted so it can be output to a file. As for the SJA Engine, the logging feature is almost done, except it needs to be saved

into a log file. A good place to start would be to run some unit tests, as we were unable to do so in the allotted time.

And for the website, adding functionality shouldn’t be too difficult as each page of the site is a separate component.

2 INTRODUCTION TO PROJECT

2.1 Who Requested It?

This project was requested by our clients at HP’s Corvallis campus, Pieter van Zee and Ronald Tippets.

2.2 Why Was It Requested?

Our clients were trying to build a system that can eventually allow any kind of people to operate their industrial printing

presses. The ultimate goal is to build a fully automatic printing press that the user only needs to press a start button

and the printer will handle the rest. In order to achieve the goal, our client will have to generate the optimal settings

for each printing job first. They tried to build this system with machine learning last year but it wasn’t working as they

expected. As a result, they wanted to try building the system again without using machine learning this year.

2.3 What Is Its Importance?

None of the companies in the industry have successfully built a system that can automate (or even semi-automate) the

printing presses. Therefore, this system will be the first automated system in the industry. Not only can HP keep its

lead beyond the competitors but also save a lot of money for their clients. Since operating the printing presses currently

requires an expert that takes about 7 months to train, using a computer to operate will reduce the cost significantly.

Also, HP continuously researches the settings so the optimal settings might change over time. It’s easier to update the

computer program instead of training people with new research results. The computer can avoid human errors as well.

2.4 Who Was/Were Your Client(s)?

Pieter van Zee and Ronald Tippets of HP’s Corvallis campus.

2.5 Who Are the Members of Your Team?

Cole Jones and Kuan-Yu Lai.

2.6 What Were Their Roles?

Cole worked almost exclusively on the front-end website and Kuan-Yu Lai worked almost exclusively on the back-

end Smart Job Advisor engine and Rules engine. There was a fair amount of crossover, and we each designed our

components with the other in mind. We worked together often to ensure that the output from the front-end matched

the expected input on the back-end and vice versa.

7

2.7 What Was the Role of the Clients?

Our clients worked on compiling rules and rulesets by communicating with experts at HP. They also helped us find the

appropriate technologies to use when we were having trouble. If we had problem during the development, they would

provide suggestions or find other experts in HP to help us.

2.8 How Did the Changes in Spring Term Affect Your Deliverables?

Since all of our work was already being done remotely (with Kuan-Yu Lai in Taiwan for the majority of Spring term)

including meetings with our clients, the changes in Spring term had no effect on our ability to work on the project.

2.9 How Do You Recommend the Next Team Use This Final Documentation to Pick Up Where You Left Off?

Use our setup guides to get all of the front-end and back-end components deployed and to familiarize yourself with the

code base. Once the project is set up and working, new code may be pushed to github and deployed on the hosted site

simply by pulling the updated repo, without having to go through all the trouble of rehosting.

8

3 REQUIREMENTS DOCUMENT

CS CAPSTONE REQUIREMENTS DOCUMENT
OCTOBER 25, 2019

AUTOMATE THE SETTINGS THAT CONTROL A
MILLION-DOLLAR PRINTING PRESS

PREPARED FOR

HP, INC
PIETER VAN ZEE

PREPARED BY

GROUP62
PROPRIETORS OF THE PRESS

KUAN-YU LAI
COLE JONES

Abstract

This document describes the details of the automated setting select project that will control the million-dollar presses from
HP. It contains subjects like timeline throughout the term, use cases, etc. . . The main purpose of this document is for people to know
what happened during the development process and give the general idea of the final product.

9

3.1 Change Table

Section Original Change

3.2 - Overview The engine will run alongside

pre-existing internal tools in a queue.

The engine is mostly independent,

doing its own PDF analysis and holding

the job results, not appending them to

anything else

3.4.2 - Use of

Decision-Making Engine

in Pre-Pass Check

Use of Decision-Making Engine in

Pre-Press Check

Use of Decision-Making Engine to

generate the recommended setting

3.4.4 - Use of

Decision-Making Engine

Current Operating Task

and Progress

Use of Decision-Displaying Current

Operating Task and Progress

Operation schedule feature no longer

belongs to our application

3.4.5 - Use of GUI to

Queue Jobs

Use of GUI to Queue Jobs Queuing jobs no longer supported by

our application

3.4.6 - Use of API Calls

to Queue Jobs

Use of API Calls to Queue Jobs Queuing jobs no longer supported by

our application

3.5.1 - Existing Internal

Tool

Existing Internal Tool We ended up using a different PDF

evaluation program instead of the one

from HP

3.5.5 - Database Database Changed to using a filesystem instead

of a database

3.2 Overview

The objective of this project is to create a decision-making engine that takes an input of information about the PDF file

to be printed and a data file with additional information about the job (like paper type, color profile, etc.), and outputs

a selection of settings used to control the printing press. The engine will run alongside pre-existing internal tools to

analyze print jobs within a queue and generate a settings profile (or choose a pre-existing settings profile) for each job

on its way out of the queue into the printing press. Once the printing job has reached the printing press, it will display

to the operator the settings it has generated, along with a justification as to why that setting was picked and if it aligned

with the settings that were chosen or imported. The overall goal is to streamline the processing of picking the correct

settings for a print job, reducing the amount of interaction between the operator and the printing press.

3.3 Glossary of Terms

Term Description

Ruleset A set of rules which the decision-making engine uses to generate optimal job settings.

Includes information about best practices, optimal ink coverage

Decision-Making Engine An engine that allows developers build and run machine reasoning models

GUI Graphical User Interface. The web application used to interact with the engine

API A protocol that allows client communicate with the server easily

10

3.4 Use Cases

3.4.1 Implementation of Decision-Making Engine

Scenario: A decision-making engine will be implemented. This engine will take a set of inputs and produce a set of

press settings to append to a print job.

How: A collection of candidate engines will be selected through interviews with machine-reasoning experts at OSU

in addition to independent research. These decision-making engines will have multiple representative rulesets imple-

mented for testing. Once the engine most suited to the task is found, it will be used to create the final implementation.

Success: The final implementation of the engine will be chosen. It will have, in addition to a GUI, an API framework

that can be used to communicate with the engine outside of the application.

3.4.2 Use of Decision-Making Engine in Pre-Press Check

Scenario: The decision-making engine will be used to check if the settings chosen for a job are appropriate.

How: This use of the engine will be part of the pre-press check, a check that occurs before a job is queued to make sure

it is fit for printing. The engine will analyze the info about the PDF and applied settings and determine whether or not

the job should be printed, and if the chosen settings are appropriate or not.

Success: The job is checked and a justification for why the settings are appropriate or not is produced. The job will not

be sent to a queue.

3.4.3 Use of Decision-Making Engine to Generate Job Settings for Job Ticket

Scenario: The decision-making engine is used to generate optimal job settings from the provided job information. A list

of all processed jobs and their outputs is available to the user.

How: The engine is used to process multiple jobs and provide an output that consists of a collection of jobs settings

stored in a job ticket in addition to justifications as to why those settings were chosen. The engine is not hooked up to a

queue. Instead, the user is able to view a list of completed jobs and their outputs, and can take the generated job settings

and save them for later use.

Success: The user will be able to save created optimal job settings in a database, then use them in later jobs that have

similar inputs.

3.4.4 Use of Decision-Displaying Current Operating Task and Progress

Scenario: When the user decides to process their task, they will submit the job ticket so the system can schedule the

operation.

How: User submits their job ticket, the ticket will be put in the task queue and wait for the press to process the task.

Success: The user will be able to see all the tasks, job ticket, in task queue and view the status of each tasks.

3.4.5 Use of GUI to Queue Jobs

Scenario: User has access to a responsive web-based application and make the printing request for the press.

How: The web-based application will have 3 functions: job acquisition, job processing, and job results. Job acquisition

only gets the input from the user, the PDF info and job ticket data. The job processing function allows the user to choose

some of the printing settings or a settings profile. The settings are different from those that the operator sees, it will

be slightly more complicated, with additional information to select rules that the decision-making engine will use. The

11

job results present the current working process of each task and the failure reason if the task failed. Also, it provides a

justification for the setting, explaining if the chosen setting matches the setting generated by the decision-making engine

or not.

Success: Different users will be able to access the same web-based application to queue up jobs or view the queue. The

user will not require press operation expertise due to the user-friendly UI.

3.4.6 Use of API Calls to Queue Jobs

Scenario: User can directly call the decision-making engine’s API to post PDF info and job ticket data to create a print

job.

How: A user will use the decision-making engine’s built-in API to make a POST call, providing documents relevant

to the print job. Similarly to how the hotfolder works, the engine then takes the provided files as input, generate the

appropriate settings, and move the job into the print job queue.

Success: The files have successfully been processed by the engine and placed into the print job queue with relevant

settings information attached.

3.4.7 Selection of Rules for Engine

Scenario: A user will be able to specify which ruleset the decision-making engine uses for a particular print job.

How: During the use of the GUI to select appropriate settings for the print job, the user may specify what ruleset the

decision-making engine will use. Each ruleset is like a profile that’s adapted to fit certain constraints better, such as the

type of paper or the printing press being used.

Success: The settings created for a print job will be better-suited for the type of paper and press being used depending

on the ruleset used.

3.5 Tools & Applications

3.5.1 Existing Internal Tool

There exists an internal tool within HP that allows users to import a PDF of what they want to be printed and XML file

that contains some rules about the print job (such as width, paper type, etc.). The user can then select a myriad of settings

that the printing press will use to print the job. We will be piggybacking on this tool, inserting our decision-making

engine into the pipeline between this internal tool and the print job queue.

3.5.2 Decision-Making Engine

Our decision-making engine will take the settings chosen from the internal tool (or from an XML file) in addition to the

PDF of what to print and generate what it determines to be optimal settings for the job. The settings it chooses are based

on its analysis of the PDF info and job ticket data. It analyses the size of the document, the density of ink per page,

the use of gradients, color fills, and graphics, and determines the optimal printing speed, press tension, and drying

heat/time. It will attach the generated settings to the print job when it adds it to the queue, in addition to supplying a

justification for each setting choice and a log file to analysis.

3.5.3 GUI

The GUI will be created for user-friendly interaction with the decision-making engine. It will take a PDF info and job

ticket data as input. The site will allow the user to drag and drop files into a web interface. It will also allow users to

select which ruleset they want the engine to use.

12

3.5.4 API

An API will be created for the engine to permit its use without having to interact with the GUI. It will be necessary

for other applications to provide input without human interference, permitting the engine to run alongside existing

programs in the job creation pipeline.

3.5.5 Database

An external database will exist to hold all of the generated rulesets that the engine will use. It will also hold engine

output that is deemed reusable for jobs with similar inputs.

3.6 Gantt Chart

Fig. 1: Requirements Document Gantt Chart

3.6.1 Gantt Chart Analysis

The following paragraph details our execution of the tasks outlined in the gantt chart above, explaining whether or not

we were able to complete the tasks in the allotted time.

It took us a bit longer to generate the rules from the white pages that HP gave us than we had originally anticipated. We

ended up having to extend that by about half a week. The chunk of tasks between weeks 4 and 5 were a bit too compact,

and it ended up taking us quite a bit longer to decided on a rules engine that we wanted to implement. That being said,

since it took us to long to find the engine, we were not able to implement multiple rulesets until later in Spring term.

The task for having a solid design of the engine’s data structure was completed a bit ahead of time since it wasn’t as

difficult as originally anticipated. We completed the task for finding a GUI tool because we already had experience with

ReactJS and Ant Design, making that the obvious choice. We were able to compile the set of executable rules by the end

of the term.

13

4 DESIGN DOCUMENT

CS CAPSTONE DESIGN DOCUMENT
NOVEMBER 23, 2019

AUTOMATE THE SETTINGS THAT CONTROL A
MILLION-DOLLAR PRINTING PRESS

PREPARED FOR

HP, INC
PIETER VAN ZEE

PREPARED BY

GROUP62
PROPRIETORS OF THE PRESS

KUAN-YU LAI
COLE JONES

Abstract

This document describes a year plan of the project that builds the assisting feature for the million-dollar printing press
from HP. The goal of the project is to create a feature that can recommend the press settings of the giant press based on job inputs
uploaded from the user. There are several components involved in building the feature: the rules engine, database, and website. This
document describes the design viewpoint from different aspects for those components use in the project, such as what is the purpose
of having this component and how does it interact with others components. It also contains the different technologies uses and the
design schedule throughout the year.

14

4.1 Change Table
Section Original Change

4.5.2.4 - Interaction This API will be called by the website to
provide user input, so the user does not
have to directly interact with the engine

We now have a middle server that
facilitates interaction between the rules
engine and the website

4.6 - Database Database No longer using a database, decided to
use a filesystem instead

4.7.2.4 - Interaction The website will provide three different
modes for the user

The website only has one mode which
is generating the recommended settings

N/A N/A Added the Smart Job Advisor server
that is responsible for the interaction
between the rules engine and the
website. Also, it acts as a file system as
well

4.2 Overview

4.2.1 Scope

The objective of this project is to create a rules-based engine that takes an input object containing information about a

print job and outputs a selection of settings used to control the printing press. The engine will run alongside existing

internal tools, taking input from upstream pre-flighting and handing output downstream into the print job queue. The

main components of the project will be the rules engine itself, a database to hold variables and constraints for the engine

in addition to its outputs, and a web-based front-end with which the user will interact to provide job inputs.

4.2.2 Purpose

The purpose of this project is to simplify the process of selecting the optimal printing press settings for any given

print job on any given press. The purpose of this document is to provide a detailed description of the design of each

component of the project in addition to providing a clear path of development.

4.2.3 Description of stakeholders

Our clients are Mr. Pieter Van Zee and Mr. Ronald Tippetts from HP. They are both senior engineers with excellent

experience with the printing presses. Their ultimate goal is for us to make a system for the printing press that only

require a user to press a single button and then the machine will cover the rest. As the leader and user of the project,

they provide feedback and suggestion to us based on our weekly research. At the same time, they are also researching

on this topic as well, sharing their knowledge with us during the weekly meetings.

4.3 Glossary of Terms

Term Description

Ruleset A set of rules which the decision-making engine uses to generate optimal job settings.

Includes information about best practices, optimal ink coverage

Rules Engine A software system that executes one or more rules in a runtime production

environment. Rules take the form of true/false assertions, much like an if statement

Black Box A system whose internal mechanism is usually hidden from or mysterious to the user.

API A protocol that allows client communicate with the server easily

Redis An open-source database that use in-memory data structure to store all of the data

Drools A rules engine developed by Red Hat. Part of jBPM Workbench.

15

4.4 Timeline

Fig. 2: Design Document Gantt Chart

4.5 Rules Engine

The rules engine will be handled by both Kuan-Yu and Cole equally, as it’s the most integral part of the project and

therefore requires the most attention.

4.5.1 Description of Design

The rules engine is the core of this project since it generates the ideal output for the user. One engine that has been

considered is Drools, a Java-based business rules management system (BRMS) with both forward and backward chaining

[1]. It allows the user to generate their own ruleset, then fire as many rules as they deem necessary in any order. The

engine uses an algorithm called the Phreak rule algorithm to evaluate the rules. Phreak is a faster and more efficient

version of the Rete algorithm (pattern matching algorithm invented in 1979) and supports more evaluation methods [2].

Easy Rules has also been considered for use as it implements a similar rules-based engine, albeit in a much simpler way,

foregoing the additional functionality of an engine like Drools for simplicity and portability [3].

4.5.2 Design Viewpoints

4.5.2.1 Context

The rules engine will function as a sort of ”black box.” The user will provide input through either an API call or, more

likely, the front-end website user interface. A series of scripts will manipulate the users inputs and call the engine’s rules

in a specific order to generate the output. The output will then be saved to the database and presented to the user.

4.5.2.2 Composition

The rules engine’s functionality is defined in the following steps:

1) Take user input passed from website/API call

2) Use script to fire rules related to determining if the selected press is optimal

3) Return to script and gather data generated from fired rule

16

4) Continue firing rules to determine optimal settings

5) When done firing rules, package output data and save to database

6) Also return output data to front-end to present to the user

4.5.2.3 Dependency

The rules engine depends on the existence of the database so that different rulesets can be fetched before runtime and

engine outputs can be saved. Although it technically doesn’t rely on the existence of the website, the site is the optimal

method for interacting with the engine. The engine also depends on having an instance of the jBPM Workbench up and

running, as the Drools engine was merged into the tool, and an instance of the KIE Execution Server to be able to use

its built-in API for making calls to the engine.

4.5.2.4 Interaction

The rules engine will expose a REST API to the user so that calls may be made to fire its rules. This API will be called

by the website to provide user input, so the user does not have to directly interact with the engine. Apart from passing

rules and receiving output, the engine is a ”black box.” The user does not know what it going on inside of the engine.

Outputs are also posted to the database by the control script.

4.5.3 Design Rationale

The reason why Drools/Easy Rules was chosen for the rules engine is because some technology akin to a decision tree

was required, as opposed to the initial idea of using some type of machine learning. It was determined that the task was

not suited to machine learning, and rule-based reasoning was settled on. Drools was chosen because it is a powerful

open-source program with a large user base, and is currently in use by some groups at HP.

4.5.4 Design Implementation

The rules engine will be composed of a series of scripts, most likely written in a language like Python, that compiles

user data into the correct format and sends it to the Drools engine by calling its built-in REST API. The script will be

called from the website when the user submits their input data. It will most likely call the Drools engine multiple times,

firing different rules to categorize the job data for future calls. After all of the rules have been called and the output is

finalized, the script will make a call to post the data to the database, then will return the output to the website so it can

be displayed to the user.

4.6 Database

Kuan-Yu will be responsible for this piece of the project, but others will help during the implementation as well.

4.6.1 Description of Design

The purpose of the database is to store all of the data that is used in both the website and the rules engine. The database

will categorize the data and provide quick access to the data while needed.

17

4.6.2 Design Viewpoints

4.6.2.1 Context

The database provides important functionality to both the website and the rules engine. It will provide stable data access

whenever needed by the rules engine or website. As a result, it is considered one of the most important pieces of this

project. The data for the rules engine will be pre-stored in the database, but the data for the website will be based on the

input of the user.

4.6.2.2 Composition

The database functionality is defined in the following steps:

For interacting with the rules engine:

1) Provide rules engine the rule set used to generate the result

2) Provide rules engine the file uploaded from the user as the input

3) Store the result generated from the rules engine

For interacting with the website:

1) Store the file provided from the user

2) Store the setting set from the user

3) Provide the recommended setting data generate from the rules engine

4) Provide the data of existing tasks on the system

4.6.2.3 Dependency

The database is dependent on both the website and the rules engine. Whenever they need a data-related service, it

will be handled by the database. Therefore the input and output for the rules engine will be the recommended settings

generated by the engine and the file uploaded from the user. For the website, the input and output will be the file

uploaded from the user and the recommended settings as well as existing tasks.

4.6.2.4 Interaction

The database does not directly interact with any other piece, rather the other pieces interact with the database. The

control script running the rules engine will make a call to the database to fetch a ruleset or post its outputs. The website

will make a call to the database to fetch all of the tables and update them if required, or to upload the user’s input file.

4.6.3 Design Rationale

The reason why the database is a good choice to store the data is the categorize feature. It allows the user to categorize

different kinds of data and find the relation of it. Therefore, it will increase the speed of searching and access to the data.

In addition, there are different kinds of databases provided in the community and the majority of them are open-source,

as a result, finding the right database can maximize the data access speed.

18

4.6.4 Design Implementation

The database will be implemented by a software called Redis [4]. The wide range of data types supported is the best fit

for all of the data in this project. Furthermore, for the data which doesn’t have any relation, Redis can access the specific

data directly. The database will be held on the server and wait for the request all the time. Whenever the database

receives an output request, it will search the data based on the request constrain and send back the data. If it receives

an input request, it will store the data in the categorize space and assign a corresponding key to it.

4.7 Website

While anyone in the group is free to contribute to the website, the bulk of its creation will be handled by Cole.

4.7.1 Description of Design

The purpose of the website is to provide a front-end through which the user can interact with the tool. Both the rules

engine and the database will be exposed to the website.

4.7.2 Design Viewpoints

4.7.2.1 Context

The website will provide a sort of ”black box” view of the rules engine, allowing users to provide inputs about a print

job and returning the outputs of its computation. By using a front-end, a minimal amount of the rules engine can be

exposed to the user so as to minimize complexity. Users will also be able to view and manipulate the databases that

store the variables that are used by the rules engine and the engine’s previous outputs.

4.7.2.2 Composition

The website’s functionality is defined in the following steps:

For interacting with the rules engine:

1) Provide user a portal for entering print job inputs

2) Make API call to rules engine, sending user input as body

3) Receive output from rules engine

4) Save output to database, also present to user

For interacting with the database:

1) Make API call to fetch the tables from the database

2) Present the table to the user, allow them to edit entries

3) Take the user’s input and update the table in the database

4.7.2.3 Dependency

The website depends on the existence of the rules engine, as well as its ability to take inputs and return outputs. It is also

dependent on the existence on the database. The input will be information about the print job (collected via a form) like

coverage and number of pages, and the output will be the result generated from the rules engine based on the input.

19

4.7.2.4 Interaction

The website will provide three different modes for the user. First is the submission mode: in this mode the user will be

able to submit the files they want to print. Second is the setting editing mode: this is for people to configure the setting

of each individual printing task. Third is the submit mode: the user (most likely a manager or admin) can make sure the

task is ready to submit.

4.7.3 Design Rationale

The reason why a website was chosen to create a front-end for used interaction, as opposed to, say, exposing only an

API to the user, was to reduce the complexity of interacting with the rules engine and database. This front-end allows

users to upload their job details via a form and to view the tables in the database without having to make database calls

or API calls with curl. While the API is still available for users to call on their own, and can be used as an alternate

method for invoking the rules engine, having a web application produces a sort of ”black box” around the engine. This

way, less responsibility is placed on the user.

4.7.4 Design Implementation

The website will be created using ReactJS as the main framework for structure, Bootstrap as the CSS framework for

design, and React-Redux for managing application state. ReactJS is an open-source JavaScript library for creating user

interfaces. It was launched by Facebook in early 2013 [5]. It is optimized for applications where data on the page

is changing rapidly. Bootstrap is the number one most popular open-source CSS framework that uses jQuery and

JavaScript design templates to create user interfaces. It was created by Twitter in August 2011, and has since undergone

three major rewrites to bring it up to version 4.0 [6]. React-Redux is a JavaScript library for managing application state,

based paritally on Facebook’s Flux [7].

The design of the website is going to prioritize efficiency and usability. The user will be presented a simple and clean

Bootstrap user interface that is easy to interact with. All of the API calls will be made using ReactJS to ensure speed

when fetching database tables or making API calls. The website will be easy to use and efficient in its handling of data.

4.8 Conclusion

In conclusion, this project consists of three major sections: the rules engine for evaluating inputs and producing optimal

press settings as its output; a database to store all of the rulesets for the rules engine as well as all of its past outputs;

a website to present a UI to the user and allow them to invoke the rules engine or view the contents of the database.

The rules engine will be controlled by a script that determines the order in which to fire the rules, and the script will be

invoked by the website when the user submits their inputs.

The rules engine will be either Drools, an open-source business rules management system created by Red Hat, or Easy-

Rules, a lightweight rules engine written in Java. The database will be constructed using Redis, an in-memory data

structure project created by Redis Labs. The website will be a combination of ReactJS, a java framework created by

Facebook, and Bootstrap, a CSS framework created by Twitter.

20

4.9 References

[1] “Drools - Business Rules Management System (Java™, Open Source),” Drools. [Online]. Available: https://drools.

org/. [Accessed: 23-Nov-2019].

[2] “Chapter 5. Rule Algorithms Red Hat JBoss BPM Suite 6.2,” Red Hat Customer Portal. [Online]. Available: access.

redhat.com/documentation/en-us/red hat jboss bpm suite/6.2/html/development guide/chap-rule algorithms. [Ac-

cessed: 23-Nov-2019].

[3] M. B. Hassine, “j-easy/easy-rules,” GitHub, 18-Nov-2019. [Online]. Available: https://github.com/j-easy/easy-rules.

[Accessed: 23-Nov-2019].

[4] Redis.io. (2019). Redis. [online] Available: https://redis.io/documentation [Accessed 23-Nov-2019].

[5] A. Papp, “The History of React.js on a Timeline: @RisingStack,” RisingStack, 04-Apr-2018. [Online].

Available: https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/. [Accessed: 23-Nov-2019].

[6] M. Otto and J. Thornton, “About Bootstrap,” Bootstrap. [Online]. Available: https://getbootstrap.com/docs/4.3/

about/overview/. [Accessed: 23-Nov-2019].

[7] “Redux · A Predictable State Container for JS Apps,” Redux. [Online]. Available: https://redux.js.org/. [Accessed:

07-Dec-2019].

https://drools.org/
https://drools.org/
access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.2/html/development_guide/chap-rule_algorithms
access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.2/html/development_guide/chap-rule_algorithms
https://github.com/j-easy/easy-rules
https://redis.io/documentation
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/
https://getbootstrap.com/docs/4.3/about/overview/
https://getbootstrap.com/docs/4.3/about/overview/
https://redux.js.org/

21

5 TECH REVIEW DOCUMENT - KUAN-YU LAI

CS CAPSTONE TECH REVIEW DOCUMENT
NOVEMBER 8, 2019

AUTOMATE THE SETTINGS THAT CONTROL A
MILLION-DOLLAR PRINTING PRESS

PREPARED FOR

HP, INC
PIETER VAN ZEE

PREPARED BY

GROUP62
PROPRIETORS OF THE PRESS

KUAN-YU LAI

Abstract

The document includes three pieces from the term project “Analysis of input data for generation of outputs”, “Hosting the
feature on the web”, and “Storage of outputs and profiles”. In each piece, it contains three different technology that is related to the
pieces. The technology is considered to be a temporary option in the project.

22

5.1 Introduction

Our team project is to design an assisting feature for the user of the HP PageWide printing presses. This assisting feature

will help the user to find the best set of each individual printing tasks they submit into the system. The decision of the

setting will be based on factors such as page type, printing quality, or ink usage.

The core of this feature is an engine that can consider every input and generate the most optimal set of settings. The

feature can be broken down into several pieces which are “Analysis of input data for generation of outputs”, “Hosting

the feature on the web”, and “Storage of outputs and profiles”.

5.2 Piece1: Analysis of input data for generation of outputs

The analysis of input data is the main piece of the project, it determines the reliability and the meaning of the assisting

feature. It is an engine that will take all of the input into consideration based on the ruleset we decide. Eventually,

generate the optimal set of setting for the users.

5.2.1 Drools

Drools, also known as knowledge is everything(KIE), is a business rules management system(BSMS) that allows the

user to generate the result based on the ruleset of their own. It is also a Java rules engine with forwarding and backward

chaining. The engine uses an algorithm called the Phreak rule algorithm to evaluate the rules. The algorithm is an

enhanced version of the Rete algorithm, a pattern matching algorithm invented in 1979. It’s better at speed and supports

more evaluation methods. A benefit of using this technology is that it the same concept with our assisting engine.

Therefore the implementation will be easier and possibly more time-efficient.[1]

5.2.2 Google Cloud Platform

Google cloud platform is a platform announced by Google in 2008. It’s a cloud-computing platform similar to Amazon

Web Services(AWS). It allows you to use the well-trained machine learning engine from Google. The user will be able to

input data into the engine and gets the analytical data from the engine. It supports Rest API so it’s very friendly for the

user who doesn’t want to train their own engine. However, Google does support customize engine. Users can either use

the built-in algorithm or create their own training application and run it on the cloud. A benefit of using this technology

will be the advantage of the pre-trained engine. The engine already has high accuracy on the picture analysis which

might be very helpful for our input analysis.[2]

5.2.3 TensorFlow

TensorFlow is an open-source platform specifically for machine learning from Google. It allows the user to build the

machine learning application with a variety kind of computer languages. The high-level API makes the building and

training steps easier and the user can deploy the application on to their product eventually. A benefit of using this

technology will be a friendly development environment for the beginner. At the same time, it is also very powerful

enough to generate a decent machine learning engine.[3]

23

5.3 Piece2: Hosting the feature on the web

To provide a convenient service to the client of the presses. Our project will have a cloud application that allows users to

submit their printing tasks with the setting they want on the cloud. The cloud application will then sent the input data

from the user to the engine and generate the result for them. The cloud application and the engine will be communicated

through API. As a result, we have to find a reliable and customizable web server.

5.3.1 Oregon State University engineering server

Oregon State University allows students to publish their own applications using their servers. Each student will be

assigned a cloud space with limited storage. Students then can publish the application they made by simply move the

data into the publish folder. After that, anyone can access the application with the link http://web.engr.oregonstate.

edu/∼your engineering username. However, the service isn’t very customizable but they do provide the other paid

server which costs 88 dollars monthly. A benefit for using this server will be the server is very stable and is maintained

by the university. One disadvantage of using this server is the free version might support the engine we built. Also, we

will have to pay monthly if we want to have an advanced server.[4][5]

5.3.2 Heroku

Heroku is a cloud application platform that allows you to put your application on the cloud and publish it to the world.

Its popularity is growing for the past few years due to its simplicity and highly customizable property. The reason why

it’s simple to use is that the developer will not have to worry about the infrastructure of the server. Heroku handles

both hardware and server for you so you can focus on perfect your own application. This is very friendly to people

who don’t have lots of experience in setting up and maintaining the server. As a result, it’s being used by large non-tech

related companies such as Toyota. The benefits of using Heroku will be, eliminate all the issues from the server and

hardware since this is handled by Heroku. Some disadvantages will be the collaboration issue and the active time of the

application. The free version of Heroku only allows one person to use and will put the application into sleep mode if it

doesn’t receive any traffic within one hour. Although the manager will wake the server up when it receives a request. It

will still cause a significant delay for the application to restart.[6]

5.3.3 Amazon Web Services

Amazon Web Services(AWS) is a well-known cloud platform from Amazon since 2006. It’s being used by many

large companies such as General Electric. The platform provides thousands of features which also include hosting

the application. The server provided by AWS is extremely customizable and stable. It also supports some other popular

platform like docker, a set of platforms that allows you to build your application from scratch rapidly. It also supports

machine learning computation similar to the Google Cloud Platform. A benefit of using AWS will be highly customizable

and supported properties. We won’t have to worry about almost any cloud-related technology that doesn’t support our

server. A disadvantage for this is the services isn’t free but they offer a free trial for 12 months after the first sign-up.[7]

5.4 Piece3: Storage of outputs and profiles

To build an application, it’s essential to have a storage space that can keep all the user data and the ruleset we made.

This is the fundamental piece of the project since all of the features is based on the data stored in the database. Thus, it’s

important to choose a reliable database that is suitable for our data.

http://web.engr.oregonstate.edu/~your_engineering_username
http://web.engr.oregonstate.edu/~your_engineering_username

24

5.4.1 MYSQL

MYSQL is a traditional open-source database developed by a tech company called Oracle. It’s a database that uses

structured query language(SQL) and stores the data as tables. MYSQL is widely used in the industry, it’s being used by

companies like Walmart or Spotify. Some benefits of using MYSQL will be it’s widely support property and powerful

query feature. A disadvantage of this is that our rules don’t have a significant relationship. This might make the query

a little bit complicated when pulling the rules.[8]

5.4.2 MongoDB

MongoDB is a modern database that is considered to be the most popular database nowadays. Unlike the traditional

row and column-based structure, it uses the document-based structure and is built for the cloud era. The data will be

formed as a JSON file, so developers can modify the JSON document to edit the data in the database. The powerful

query feature is another reason why it’s extremely popular. Furthermore, it provides a statistical feature that allows the

developer to visualize the data stored in the database. Due to its outstanding ability in this era, it is being used by giant

tech companies like Google and Facebook. A benefit of using MongoDB will be the usage of powerful query feature.

Since our ruleset doesn’t have a significant relationship with each other. The powerful query feature will simplify the

query compared to the traditional SQL database.[9]

5.4.3 Redis

Redis is also an open-source database. Unlike the traditional row and column-based structure and document-based

structure. Redis uses key-value based on its structure. That is, developers can pull out the specific data by query the

key of that data. Also, Redis stores the data in the memory instead of disk, so the speed is extremely fast compared

to the database like MongoDB or MYSQL. A benefit of using Redis is that we will be the property of easily pull out

specific data. The data has a corresponding key so the relationship between the data won’t affect the query complexity

significantly. A disadvantage of using Redis will be the in-memory storing structure because it’s not stored permanently.

Thus, it will have to rebuild the database whenever the server restart.[10]

5.5 Conclusion

In this modern world, there are thousands of technology that exist and more and more coming out in the future. In

addition, finding and choosing the appropriate technology will increase the performance and the development time of

the application. Therefore, the technology present in each piece will not be the only option to consider.

5.6 References

[1] ”Drools Documentation. [online] Docs.jboss.org. Available at: https://docs.jboss.org/drools/release/7.29.0.Final/

drools-docs/html single/index.html [Accessed 9 Nov. 2019].

[2] Google Cloud. (2019) Training Overview AI Platform Google Cloud. [online] Available at: https://cloud.google.

com/ml-engine/docs/training-overview [Accessed 9 Nov. 2019].

[3] TensorFlow. (2019). Introduction to TensorFlow — TensorFlow. [online] Available at:https://www.tensorflow.org/

learn [Accessed 9 Nov. 2019].

[4] Information Services. (2019). Server Management — Applications Access and Deployment, Shared Infrastructure

Group — Information Services — Oregon State University. [online] Available at: https://is.oregonstate.edu/service/

server-management [Accessed 9 Nov. 2019].

https://docs.jboss.org/drools/release/7.29.0.Final/drools-docs/html_single/index.html
https://docs.jboss.org/drools/release/7.29.0.Final/drools-docs/html_single/index.html
https://cloud.google.com/ml-engine/docs/training-overview
https://cloud.google.com/ml-engine/docs/training-overview
https://www.tensorflow.org/learn
https://www.tensorflow.org/learn
https://is.oregonstate.edu/service/server-management
https://is.oregonstate.edu/service/server-management

25

[5] It.engineering.oregonstate.edu. (2019). Where do I put my personal webpages? — Information Technology and

Computing Support — Oregon State University. [online] Available at:

https://it.engineering.oregonstate.edu/where-do-i-put-my-personal-webpages [Accessed 9 Nov. 2019].

[6] Devcenter.heroku.com. (2019). How Heroku Works — Heroku Dev Center. [online] Available at: https://devcenter.

heroku.com/articles/how-heroku-works [Accessed 9 Nov. 2019].

[7] Docs.aws.amazon.com. (2019). What Is Amazon EC2? - Amazon Elastic Compute Cloud. [online] Available at:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html [Accessed 9 Nov. 2019].

[8] Dev.mysql.com. (2019). MySQL :: MySQL 8.0 Reference Manual :: 1 General Information. [online] Available at:

https://dev.mysql.com/doc/refman/8.0/en/introduction.html [Accessed 9 Nov. 2019].

[9] MongoDB. (2019). What Is MongoDB?. [online] Available at: https://www.mongodb.com/what-is-mongodb [Ac-

cessed 9 Nov. 2019].

[10] Redis.io. (2019). Redis. [online] Available at: https://redis.io/documentation [Accessed 9 Nov. 2019].

https://it.engineering.oregonstate.edu/where-do-i-put-my-personal-webpages
https://devcenter.heroku.com/articles/how-heroku-works
https://devcenter.heroku.com/articles/how-heroku-works
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://dev.mysql.com/doc/refman/8.0/en/introduction.html
https://www.mongodb.com/what-is-mongodb
https://redis.io/documentation

26

6 TECH REVIEW DOCUMENT - COLE JONES

CS CAPSTONE TECH REVIEW DOCUMENT
NOVEMBER 8, 2019

AUTOMATE THE SETTINGS THAT CONTROL A
MILLION-DOLLAR PRINTING PRESS

PREPARED FOR

HP, INC
PIETER VAN ZEE

PREPARED BY

GROUP62
PROPRIETORS OF THE PRESS

COLE JONES

Abstract

This document presents three pieces of the overall project: the capturing of input data from the user; the API to be used for
interacting with the tool; and the presentation of the tool to the user via some web application. Each piece listed has three technologies
taken into consideration, weighing the pros and cons to determine whether or not the technology is worth using. Although a conclusion
is provided that states which technologies we are likely to use going forward, those choices are subject to change in the future
depending on the desires of the project’s clients.

27

6.1 Introduction

Our team is attempting to create a rules-based decision-making engine to help provide recommendations for settings of

different HP PageWide printing presses. These settings are based on a number of factors, namely the weight and density

of the paper selected, the size of the material to be printed, and the maximum ink coverage. These inputs, among others,

will be used by the decision-making engine to determine the optimal output settings that control the speed of the press,

the temperature of the press’ dryer, the tension of the press’ rollers, and whether or not to use bonding agents, primers,

and moisturizers.

The decision-making engine will require some method of capturing user inputs, presenting a front-end to the user,

analyzing user inputs to determine optimal press settings, storing previous outputs, and providing an API so the engine

can fit inside an existing job-creation pipeline.

6.2 Piece 1: Capture of Input Data from User

The handling of input data is the first step in the project’s pipeline. At this point it is assumed that all pertinent data has

been scraped from the customer’s PDF in the PDF pre-flighting, so no analysis or risk-assessment is done on our part.

There are multiple ways of collecting data about a print job, which will be discussed in the following subsections.

6.2.1 User Interface

The first logical step is to present the user with an interface. This interface will act as the front-end of the tool, providing

a place for users to submit a PDF file and an XML file for their print job. This may not be the easiest to implement, as it

would involve creating and hosting a web application, but it would most likely be the most user-friendly.

A benefit of using a user interface is that the user would be able to see the progress of the decision engine, and would

immediately be able to whether or not the document was accepted, and if so, view its outputs and recommendations.

Users would be able to manually determine the next step of the print job: they continue with recommended settings

produced from the engine; they see that the job was rejected or that the recommended settings do not align with what

they want, and they pull the job ticket; they continue along the pipeline, sending the job and its ticket into the printing

queue.

6.2.2 Email

Another possibility for capturing user input would be to allow the user to simply email their input PDF and XML files.

From there either an automated system is set up (this would most likely be something that HP does themselves that we

are not a part of creating) to process the email and send its attachments to the decision engine, or this would have to be

done manually by an HP employee.

A benefit of using an email-based system is that it’s fire-and-forget. A user sends an email with the input files as

attachments and later receives a reply with the verdict of the decision engine. The problem with this system however,

is that there is no way for the user to see the status of their submitted job - they only get a response when it’s finished.

They also have no way to decide whether or not they want to pull the job from the queue, as the decision engine makes

the choice to accept or reject the submission.

28

6.2.3 Hot Folder

Also known as a ”watched folder” a hot folder is a network folder that is associated with the decision engine [1]. It

allows users with access to drop files inside, which are then processed by a script that checks for new files. The script

takes the file directly from the hot folder and sends it to the decision engine for processing.

A benefit of using a hot folder it that it’s even more hands-off than emailing the print job. Once the files are dropped

into the hot folder, they are picked up into the queue for the decision engine. A major drawback to hot folders is that

they separate jobs by file. That is, they are incapable of selecting multiple files for the same job [1]. This drawback makes

them an unlikely candidate for user input capture.

6.3 Piece 2: Tool Interaction Using API

In order to fit alongside the existing job-creation pipeline, the decision-making engine must be able to be interacted with

via scripts that make API calls. That way the first stage of job creation, pre-flighting, will be able to pass PDF and XML

files directly to the engine without human intervention. After the engine has processed the files and made its settings

recommendations, it will be able to pass those outputs to the job queue and a database for storage. There are many

options out there for creating an API, but I will only be looking at three: REST, SOAP, and JSON-RPC.

6.3.1 REST

REST is an acronym for REpresentational State Transfer. It was created in 2000 by Roy Fielding for use in distributed

hypermedia systems. REST is a method for creating APIs that is guided by a number of principles. Namely, that it’s

client-server based (UI concerns are separated from data storage concerns), stateless (each request contains all the

information to understand the request), and cacheable [2]. It uses the same HTTP protocol that’s used to view regular

web pages, making implementation faster and easier. REST APIs allow making available through an API information

that is already present on the web page [3].

The benefits of using a REST API are mainly due to the separation between client and server. Because the client does not

need to know how the server interacts with the system, REST APIs tend to scale better than other methods, tend to be

more flexible and portable, user less resources, and are typically much simpler [4]. However, there are some drawbacks.

First, REST APIs have no way of addressing unsuccessful requests other than simply attempting the request again.

Second, REST APIs are not as secure as other methods, such as SOAP [5].

6.3.2 SOAP

SOAP is an acronym for Simple Object Access Protocol. It was created in 1998 for Microsoft, and quickly became popular

for creating APIs. SOAP relies on XML, with each operation being explicitly defined. Unlike REST, which is required

to use HTTP to send its requests, SOAP requests can be sent over almost any protocol, including but not limited to

HTTP, SMTP, TCP, and JMS [6]. SOAP messages are defined by the WSDL (Web Service Definition Language), an XML

document that defines the functions that are implemented and presented to the user.

29

SOAP APIs have a number of benefits over REST APIs. In addition to being able to be sent over almost any protocol,

SOAP APIs have built-in error handling, it’s standardized, it’s language and platform independent, and works well in

distributed environments (whereas REST assumes point-to-point communication) [6].

There are some critiques of SOAP, however. One big drawback is that if you want to make a change to your API

implementation, then the WSDL must change, which means that the client will have to recompile their application.

Another is that although SOAP APIs can use almost any transfer protocol, this is not often taken advantage of, as the

industry-standard is to use HTTP. Also, SOAP is not nearly as scalable, flexible, and lightweight as REST [6].

6.3.3 JSON-RPC

JSON-RPC is a stateless remote procedure call (RPC) protocol. It is used to request a service from a program on the same

network, and utilizes the JSON notation to define the properties of the request. It is much simpler than SOAP or REST

APIs, and therefore uses significantly less bandwidth [7].

Some advantages it has over REST and SOAP APIs are as follows: like SOAP APIs, JSON-RPCs are agnostic to the

protocol, meaning that it can use TCP or SMTP instead of HTTP, reducing some overhead; REST verbs are limited, and

JSON-RPC can define its own methods; passing parameters is much easier, as they are defined in the body of the JSON

object [7].

6.4 Piece 3: Presentation of Tool to User

In order for the user to be able to directly interact with the decision-making engine, a user interface must be created

and hosted. From this UI, the user will be able to submit print jobs, view the status of jobs currently in the engine’s

queue, and view the output of both current and previous jobs. All of the functionality of this web tool will be tied to the

existing print job pipeline via an API, discussed in the previous section. There are a number of ways of going about this,

but the most appropriate method is to use a lightweight web framework. We have chosen three potential technologies

to use: ReactJS, Bootstrap, and Angular.

6.4.1 ReactJS

ReactJS is an open-source JavaScript library for creating user interfaces. It was launched by Facebook in early 2013 [8].

It is optimized for applications where data on the page is changing rapidly. It achieves this optimization by using a

virtual DOM (document object model) to update only the components on the page that changed, instead of rerendering

the whole page. This makes it very useful for fetching large amounts of data from a database that is constantly changing.

There are many advantages to using ReactJS, including but not limited to: the ability to reuse the same component to

render different objects on a page; downward data binding, so that changes to a child component does not affect the

parent; a wide set of UI libraries to use, created by a large open-source community of developers [9].

In addition to its many advantages, there are some downsides. For one, ReactJS has a high pace of development.

Things are constantly changing and adapting, and it can be difficult to keep up. A side effect of this rapid development

is that there is poor documentation. Since changes are happening so frequently that there’s no time to write proper

documentation [9].

30

6.4.2 Bootstrap

Bootstrap the number one most popular open-source CSS framework that uses jQuery and JavaScript design templates

to create user interfaces. It was created by Twitter in August 2011, and has since undergone three major rewrites to bring

it up to version 4.0 [10]. Its two main appeals are that it lets users create clean-looking responsive websites without

having to write thousands of lines of CSS, and that it has a built-in responsive grid system that allows content to be

segmented easily.

Some of its advantages include the built-in grid system mentioned above, responsive images that resize automatically

based on current screen size, and a whole host of control components like navigation bars and dropdown menus. Also,

Bootstrap has very well-defined documentation, much better than the aforementioned ReactJS [11].

There are, however, some downsides. One of the major complaints with Bootstrap is that its syntax can be confusing,

making the library difficult to lean. Also, Bootstrap files are notoriously large, which can lead to an increase in load time

for websites built using the framework [11].

6.4.3 Angular

Angular is a JavaScript framework that was created by Google in 2012. Over the years it has been updated and majorly

rewritten a few times, sitting at version 9.0 today. Similarly to ReactJS, Angular works by controlling elements of a page

individually, updating a specific element when its data is changed [12]. It does so using the Model-View-Controller

(MVC) architecture. Essentially, in binds JavaScript and HTML, accepts user input using JavaScript, and uses said

input to modify the HTML [13]. Although it’s possibly to write Angular code in JavaScript, it is recommended to use

TypeScript.

Some of Angular’s benefits include data binding, allowing the web application to quickly respond to user input,

modularity, allowing components to be broken up into modules which can then be puzzle-pieced together with other

modules to form a responsive page, and custom directives, which allows for the manipulation of HTML functionality

[14].

Some of the downsides are similar to those listed for the other UI framework options. Although Angular can be easy to

learn at first, it has a fairly steep learning curve, taking a lot of time to figure out how to use its more complex features.

Like React, the documentation is fairly good, but in need of improvement. It’s also fairly difficult to debug because it

can be difficult to determine what scope is being used [14].

6.5 Conclusion

In conclusion, there are a significant number of free open-source technologies out there for use in this project. The

ones included in this document were considered to be the strongest, be it through its user base or recency. All things

considered, the technologies we are most likely to use going forward in this project are as follows: user interface for

capturing input data (although as a stretch goal, all of the technologies listed will be implemented), REST for the API

(as it seems like this is the industry standard, and I have some experience with it), and as for UI, we’re not entirely sure

yet. React seems to be the new industry standard, and I do have a lot of experience with it, but all of the technologies

31

listed are valid for use in creating a web application. Most likely, the web app will be a combination of all three, using

React + Angular for structure and data handling and Bootstrap for styling. However, this is all up for depending on

what our client deems is appropriate. As such, all of these choices are subject to change in the future.

6.6 References

[1] “Hot folder,” DAM Glossary, 17-Apr-2014. [Online]. Available: https://damglossary.org/hot-folder. [Ac-

cessed: 08-Nov-2019].

[2] “REST API Tutorial,” What is REST – Learn to create timeless REST APIs. [Online]. Available: https://restfulapi.net/.

[Accessed: 08-Nov-2019].

[3] G. Levin, “RESTful APIs Technologies Overview,” RestCase, 18-Nov-2017. [Online].

Available: https://blog.restcase.com/restful-apis-technologies-overview/. [Accessed: 08-Nov-2019].

[4] “What are the advantages of a REST API?,” Chakray, 05-Jun-2019. [Online].

Available: https://www.chakray.com/advantages-of-rest-api/. [Accessed: 08-Nov-2019].

[5] D. Breaker, “SOAP vs REST - Which API Architecture Reigns Supreme?,” DreamFactory Blog, 18-Sep-2018. [Online].

Available: https://blog.dreamfactory.com/soap-vs-rest-apis-understand-the-key-differences/. [Ac-

cessed: 08-Nov-2019].

[6] “SOAP vs REST 101: Understand The Differences,” SoapUI. [Online].

Available: https://www.soapui.org/learn/api/soap-vs-rest-api.html. [Accessed: 08-Nov-2019].

[7] “JSON-RPC vs REST for distributed platform APIs,” Radix DLT - Decentralized Ledger Technology, 13-Apr-2018.

[Online]. Available: https://www.radixdlt.com/post/json-rpc-vs-rest/. [Accessed: 08-Nov-2019].

[8] A. Papp, “The History of React.js on a Timeline: @RisingStack,” RisingStack, 04-Apr-2018. [Online].

Available: https://blog.risingstack.com/the-history-of-react-js-on-a-timeline/. [Accessed: 08-Nov-

2019].

[9] “The Good and the Bad of ReactJS and React Native,” AltexSoft, 10-Sep-2018. [Online].

Available: https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-reactjs-and-react-native/.

[Accessed: 08-Nov-2019].

[10] M. Otto and J. Thornton, “About Bootstrap,” Bootstrap. [Online]. Available: https://getbootstrap.com/docs/4.3/about/overview/.

[Accessed: 08-Nov-2019].

[11] A. Ouellette, “What is Bootstrap: A Beginners Guide,” What is Bootstrap? An Awesome Beginners Guide, 20-Sep-

2017. [Online].

Available: https://careerfoundry.com/en/blog/web-development/what-is-bootstrap-a-beginners-guide/.

[Accessed: 08-Nov-2019].

[12] I. Bodrov-Krukowski, “Angular Introduction: What It Is, and Why You Should Use It,” SitePoint, 22-Mar-2018.

[Online]. Available: https://www.sitepoint.com/angular-introduction/. [Accessed: 09-Nov-2019].

[13] A. N, “What is Angular: All You Need to Know About the Popular JS Framework,” Hostinger Tutorials, 10-Apr-2019.

[Online]. Available: https://www.hostinger.com/tutorials/what-is-angular. [Accessed: 09-Nov-2019].

[14] “The Pros and Cons of choosing Angular for web app development,” DDI Development, Jan-2019. [Online]. Avail-

able: http://ddi-dev.com/blog/programming/pros-and-cons-of-angular-web-app-development/. [Ac-

cessed: 09-Nov-2019].

32

7 BLOG POSTS

7.1 Fall Term

7.1.1 Cole Jones

Week 4 Progress: Our team has completed about half of the Rules document that our client wanted us to generate
using a collection of HP white pages on best practices. We met with our client today to discuss our findings
and lay out a roadmap for what the remainder of the term. They helped us with uncertainties about the
Rules document and helped broaden our understanding of the project and what they want to see as a
final product. We were also tasked with finding some help with machine-learning from experts in the field
around OSU.
Problems: We only had a minor issue with the Rules document. We were unsure if we were doing the
assignment correctly, and had some concerns about whether we were looking hard enough in some of
the documents or if there really was no information relevant to best practices. The client clarified their
expectations about the assignment and we are not slated to finish the document over the weekend.
Plans: Our plan for the immediate future is to finish gathering rules and best practices for the Rules
document. After we are done with that, we are tasked with meeting up with experts in the field of
machine-learning at OSU and discussing what kinds of tools would best fit the requirements of the project.
We are also expected to distill the Rules document (when we are done writing it) to a smaller selection of
rules that are deemed more important and encompassing of the main ideas.

Week 5 Progress: After reviewing the Rules document and seeing that it was mostly my work, our client decided
that I should finish writing that document myself, and that my teammate should create his own version.
I finished writing the document and we reviewed my findings during today’s meeting. Our client also
reviewed our problem statement and offered some suggestions on how to tweak the Gantt chart and some
of the use cases. We ended up adding several use cases that more accurately represent the scope of the
project for the remainder of the term. We also obtained a list of professors at OSU that are the in the
machine-learning field.
Problems: We didn’t really have any problems. I was able to finish my Rules document on Friday morning,
but York was not. He will finish the document within the next few days.
Plans: We were tasked with combining both of our Rules documents into a single document, then
narrowing it down into a set of representative rules. We are to take these representative rules and meet
with a number of professors at OSU that have a background in machine-learning, gathering as much
expert knowledge about machine-learning and the available tools as we can. Our client wants us to present
these findings, along with additional independent research about available machine-learning engines, and
present them during next Friday’s meeting.

Week 6 Progress: Some research has been done into a couple of applications of computer vision. It’s my thought
that computer vision could be used to determine total area coverage of ink in the PDFs. We sat down
with professor Tadepalli to ask him some questions about machine learning and how it can be used in our
project. He said that we might be better off not using machine learning, and to instead use conditional
logic or something simpler like a decision tree. He did, however, say that computer vision could be useful.
I went to Scott Fairbank’s office hours on Thursday to talk about machine learning and computer vision.
He is going to sit in on our next meeting this Monday and help us get the information we need from our
client to determine whether or not machine learning will be useful.
Problems: We’ve found by talking to multiple people that our problem may not necessarily require
machine learning, but would benefit more from computer vision and something like a decision tree. We
will be meeting with our clients to discuss this.
Plans: We will continue to do research about available technologies and how they may be useful in
creating the engine for our clients. We will also meet with our clients on Monday, and Scott Fairbanks will
join us to make sure we get the information we need, and to assist us with any machine learning-related
questions.

Week 7 Progress: With the help of Mr. Fairbanks, we were able to talk to our clients about machine learning and
how it relates to the project. He helped them understand that the scope of the project was too large, and
clarified the appropriate amount of time per week we should be spending on it. He also helped us figure
out what type of machine learning we should pursue.

33

Our clients gave us a revised version of the project with clear goals, including a basic outline of what our
engine’s inputs and outputs should be and some research into a tool in use at HP that we could potentially
utilize. We also revised our set of representative rules to filter out rules that are not applicable for the
engine.
Problems: After Mr. Fairbanks talked with our clients about the scope of the project, there have been no
problems.
Plans: We are going to look into the use of Drools as a rules-based engine to see if it’s well suited to the
goals of this project. We will also look into services available to host our tool, including Google Cloud and
AWS.

Week 8 Progress: Our group managed to get an instance of the Drools Workbench up on both AWS and Microsoft
Azure. My instance, the one on Azure, has data persistence, so that when the Docker containers are stopped
and restarted, the application retains all data is was given. Our clients are pleased with our progress, and
expect us to look further into Drools as our engine of choice. They still want us to look at alternative
rules-based engines, but for the most part we are locked into Drools.
Problems: The was a bit of difficulty getting the Drools image set up on Docker, but both my partner and
I have been able to do so on our respective sites. I was having some trouble getting a non-empty response
when calling the tool with its REST API, so I’m going to have to look into that.
https://www.overleaf.com/project/5ed0673f4f22340001925472 Plans: We are going to continue working
with the Drools engine and get to know how it works. We are also looking into some alternatives to Drools,
but for the most part, we’re sticking with Drools.

Week 9 Progress: I managed to get some sample rules set up on Drools. I was able to make an API call, passing
an input object and receiving a modified object back. So now that I have some rules up and running and
returning outputs, I just have to look deeper into the tool to find out how best to implement our rule set.
My partner York looked into some different ways in Drools to create a rule set.
Problems: There were not any problems this week.
Plans: We are going to continue looking into Drools to find out the best method for implementing our
rule set. Our clients also asked us to look into something called Easy Rules, a simpler rule creation engine
that works similarly to Drools, albeit much simpler and therefore more lightweight. I’m going to focus in
on exploring Easy Rules while my partner focuses in on Drools.

7.1.2 Kuan-Yu Lai

Week 4 Progress: Read half of the document provided by the client. Extract and record all of the rules and practices
from the document into Google Doc file. Present the result to the client during the meeting on Friday.
Problems: Not able to find content that the client wants in some document.
Plans: Review all of the documents and produce evaluation ruleset.

Week 5 Progress: Finish document review as individual. Working on merging individual document to final
document. Present individual result to the client and explain some difference between individual work.
Clarify the term use and use cases expectation from client.
Problems: Progress a bit behind, should’ve done the draft of interview question.
Plans: 1. Finish merging individual document during weekend 2. Finish the interview question early
next week 3. Schedule interview time with OSU machine learning professor 4. Start to research machine-
learning (Decision-Making) engine online and record the research result in document

Week 6 Progress: 1. Merging all the document 2. Start contacting and interviewing professor 3. Start researching
online about the technology we might use
Problems: Need to verify the technology use from the client. After talking with the professor, decision-
making tree might be a better option for us.
Plans: 1. Meeting with client on Monday and decide which technology should we use, either machine
learning or decision-making tree 2. Keep researching online after the meeting 3. Generate some experi-
mental prototype during learning process

Week 7 Progress: 1. Research on the technology option for the project 2. Client narrow down the requirement of
the project and clarify the goal again
Problems: Have to make more progress in order to finish the project plan before the design document
due two weeks later.
Plans: 1. Research on Drools, the technology suggested by client 2. Generate experimental program with
drools with the ruleset we made

34

Week 8 Progress: 1. Research on the server environment for future use 2. Set up environment on AWS and
Microsoft Azure
Problems: Since we are using free tier we need to estimate the budget as a free tier user. Also, AWS isn’t
being honest to the user. That means we might accidentally active paid service which charge hourly and
will become a significant cost in the future.
Plans: Start to implement the ruleset using drools.

Week 9 Progress: Research on drools tool and dockers on Microsoft Azure
Problems: Drools is very complicated and hard to learn. This will cause the program hard to maintain in
the future. As a result, maybe using the simpler engine will solve this problem since the rulesets of ours
isn’t large
Plans: 1. Generating more stuff using drools 2. Take a look into the new tool called j-easy, a simple version
of rules engine

7.2 Winter term

7.2.1 Cole Jones

Week 1 Progress: Our group spoke with our clients to lay out the plan for this term. We made a decision on what
rules engine we want to continue working with. We also talked about getting a front-end UI up to provide
input to the engine and a back-end to process that input and package it in a format that work with the
rules engine.
Problems: My free credits for Microsoft Azure expired and I’m no longer able to access neither my virtual
machine nor the files that were on it. I’m going to have to either pay some money to start the VM again or
just start the rules engine from scratch.
Plans: The overall plan for the following week is to draw a mock-up of what the website UI will look like,
implement a very basic version of said UI with a simple back-end to communicate with the rules engine.
We will also continue to work with the rules engine to add more functionality. Hopefully by the end of
next week we will have a simple website (or at least the designs for one) and a simple working prototype
rules engine.

Week 2 Progress: We had a meeting with our client where we went over the work that we completed over the
past week. York demonstrated the scripts he wrote for interacting with the rules engine, and I did a short
tour of the template website that I put together. Also, I was able to upgrade my subscription to Azure to
get the files from the virtual machine that was locked to me when my free trial ended.
Problems: No problems were encountered this week.
Plans: The plan for the following week is to continue working on the website and the rules engine. We
were told by our client that it would be idea if we were using Java for the rules engine instead of python
(which the demo was written in) and JavaScript for the website’s backend instead of C. We were also given
direction on how they want the website to look, including how the results page should be laid out and
stored in the database.

Week 3 Progress: I met with our client alone this week since my partner was out sick. We went over my progress
on the website for the tool and discussed changes that we would like to see in the future. We discussed
the possibility of using actual product names in the developer version of the tool, and we decided that we
could use the actual data locally and add the file to .gitignore so it doesn’t accidentally get uploaded to
github. The clients are pleased with my work so far, and are working to compile more inputs for the tool.
We also discussed the possibility of using the tool on a mobile device, so now I’m going to have to take
into consideration that the UI might need to scale down to fit on a phone screen.
Problems: York was sick for the meeting this week, but we’ve scheduled another meeting on Monday so
that he can join and be caught up.
Plans: The plan for the following week is to continue working on the website using additional data that
our clients are in the process of collecting for us. Also, I’m going to split my attention between the website
and Easy Rules, since I was exclusively focused on the website this week.

35

Week 4 Progress: York and I shared our progress with our clients during our regularly scheduled Friday meeting.
The clients seemed pleased with my progress and like how the UI is coming together. They suggested a
few things that I could tweak, and said that I should finish that up quickly and move on to the job results
page. York showed off his progress with the rules engine, which unfortunately hit a stop because of an
error he was unable to figure out. The clients suggested that he put the time in to break through the error
and finish up base functionality.
Problems: York hit a stopping point in the rules engine because of a bug that he is yet unable to identify.
Other than that, there were no problems this week.
Plans: I plan on finished up the job submission form, ironing about any bugs and refactoring messy code.
After that, I’ll move on to the job results page. I’m hoping that York will be able to get the server up and
running so that I can use actual rules engine outputs for my data, but if he isn’t able to do so quick enough
then I’ll just use mock data.

Week 5 Progress: We had our typical Friday meeting with our clients and demoed the progress we made since
last week. I was asked to add a bit of functionality to the paper selection section of the job input form, and
was able to do so fairly easily. Unfortunately, it’s been a very busy week with midterms coming up, and I
have not been able to make any more progress that that.
Problems: Because midterms are coming up, little progress was made this week on both my end and my
partner’s end. We’ve decided that this weekend we’re going to put in extra time. Our Friday meeting was
pushed back to Monday because of a time conflict, so we should be able to get some more work done
before meeting with our clients again.
Plans: We plan to kick it into overdrive in the coming week to meet the deadline for alpha functionality.
We have a pretty good framework right now; we just need to connect the front-end and backend.

Week 6 Progress: During our Friday meeting, I showed off the progress that I made on the website form. I
converted all mentions of “weightclass” into “weightgsm” as the client requested, and added functionality
for having a form element change when a checkbox is clicked. York showed off his progress with the API
endpoints and how they accept POSTs from my site.
Problems: There weren’t any major problems, but our client did request that we create some diagrams
about our project that we never got around to doing. Since we need those files for the design review next
Thursday, we are going to complete them anyways.
Plans: We are going to continue to push towards alpha functionality for the design review next Thursday.
I am going to create a new page to display the job results from York’s rules engine, and York is going to
change his engine to accept the new format of input from my site. The results page will be fairly basic, but
enough to show the output of the engine.

Week 7 Progress: During our Friday meeting, we discussed the design review, how it went, and what kinds of
questions people were asking. We told our client that everything went well. Unfortunately, because of the
rush to complete everything before the design review, we were not able to make much more progress on
the website and backend (although progress was made). We also presented a few diagrams that we made
for the design review. Our client told us what he wants us to do in the coming week, basically to continue
implementing rules in the backend, and to add a spreadsheet to the job history view so that multiple jobs
can be compared.
Problems: The design review took up a lot of our focus this week, so we weren’t able to get as much work
done as we wanted. However, it’s out of the way now, so it should be smooth sailing from here on out.
Plans: We are going to continue to implement functionality in the rules engine, including starting to build
a collection of different rules files. I will implement the job results page and continue to update the job
history page so that jobs may be compared with one another.

Week 8 Forgot to do this one.
Week 9 Progress: During our Friday meeting, we discussed the changes we made to the output format of the rules

engine, the addition of a Job Results screen that is automatically linked to upon New Job submission, and
the changes made to the rules engine. Our clients seem very pleased with our progress so far, even going
as far as calling it a “milestone release.” After sharing our work, our clients outlined a list of features that
they would like to see implemented in the front-end, and requested some code in the back-end be put into
YML files instead of being coded in Java. Overall, everything went well.
Problems: There were no problems this week, everything went well.
Plans: I am going to add a column to the Job Results spreadsheet for the justifications (even though they
don’t exist yet) in addition to a checkbox that will allow users to toggle said column. I also want to add
an export button to quickly dump the contents of the spreadsheet into a CSV file. York will work to move
code out of Java and into the YML files, and will start to implement justifications for why the rules engine
chose a specific output.

36

Week 10 Progress: Not a lot of progress was made this week. All group members were too busy finishing up
projects due on dead week to make any meaningful progress. I was able to add an “export to CSV”
button on the results page, but otherwise nothing else
Problems: Not enough available time this week to work on the project.
Plans: I plan on doing everything in the coming week what I said I was going to have done by today.
After finals I’ll have plenty of free time to make up this week.

7.2.2 Kuan-Yu Lai

Week 1 Progress: Meeting with our client and discuss about the future plan of this term.
Problems: Haven’t start the project so we don’t have any problem this week.
Plans: Generate GUI prototype before next meeting, this should also include the basic backend function.

Week 2 Progress: Both of us are nearly done with out type of the prototype, which mean 80% of the functionality
of our parts are working.
Problems: Our client will like to see the program coded in java related language because he says it good
for long term usage. Therefore, we need to decide which java-related language to use. Probably javascript
since we are both familiar with.
Plans: Merge our prototype together, back-end and front-end, and finish the prototype.

Week 3 Progress: Our client specifies the input and output of the program so we adjust our own piece and trying
to merge it together.
Problems: I was very sick this week so I didn’t make significant progress and can’t participate the weekly
meeting on Friday. My progress next week has to catch up the schedule.
Plans: Merge our prototype together, back-end and front-end, and keep optimizing the rules engine.

Week 4 Progress: Almost done with the back-end server prototype.
Problems: We planned to merge the website and the server together this week but due to the bugs in the
back-end server, we weren’t able to merge it together.
Plans: Fix the back-end server bugs and merge our prototype together.

Week 5 Progress: Get both online servers working.
Problems: Our client has time conflict with the weekly meeting so we have to discuss further detail on
next Monday.
Plans: Improving the accuracy of the rules engine.

Week 6 Progress: Finish the SJA Engine implemented by Node.js.
Problems: There were a bit of communication mistake between me and Cole, so the front-end and
back-end doesn’t connect very well.
Plans: Update the rules engine so that it can take the up-to-date input from the front-end.

Week 7 Progress: Update the input format of the rules engine and implement some more rules.
Problems: Our rules engine is a bit buggy during design review but it ends up well.
Plans: Implementing more rules, increase the accuracy of the rules engine.

Week 8 Progress: Implementing 80% of the rules given by the client.
Problems: We don’t have any problem this week.
Plans: Implementing more rules send form the client.

Week 9 Progress: Implement all the rules from given from the client.
Problems: We don’t have any problem this week.
Plans: Implement the new set of rules that the client will send us in the next couple days.

Week 10 Progress: Fixed the issue where the rules aren’t implement in the right way.
Problems: I accidentally missed the weekly meeting so I wasn’t able to show my progress to the client.
Plans: Implement as many rules as I can in the new ruleset that our client will send us over the weekend.

37

8 FINAL POSTER

Fig. 3: Final Poster for Engineering Expo

38

9 PROJECT DOCUMENTATION

9.1 How does the project work?

The Smart Job Advisor arose out of the need for a system that can cut out the middle-man, using a Java-based rules

engine (Easy Rules) to provide optimal press settings based on a number of inputs about a print job, such as the type

of paper, the ink coverage, whether or not it’s in quality mode, what the press unwinder brand is, etc. With the advisor,

regular employees will be able to quickly and efficiently append settings tickets to their print jobs through the use of

a ReactJS-based web application. The advisor will not only recommend the optimal settings for a given job on a given

press, but also provide justifications as to why each setting was selected.

Upon accessing the web tool, users are presented with a choice to either add a new job or view the job history. Choosing

to add a new job brings them to a form that asks for some basic information about the job. When the user clicks submit,

the information in the form is passed to the SJA Engine. The SJA Engine will then parse the input and send it to the

Rules Engine. After the rules engine sends back the recommended settings to the SJA Engine, the SJA Engine will record

the recommended settings into a file and send a job ID to the website. The job ID is used to look up the recommended

settings for the job from the job history and display its contents to the user.

Fig. 4: Project workflow

9.2 Install Guide How to run it

First clone the repository from the Github https://github.com/KuanYuLai/Senior-Project. The code of the front-end is

in the sub-folder of the Website folder called SmartJobAdvisor. The code of the back-end is in the Back End folder.

Please run the installation command in the corresponding folder.

https://github.com/KuanYuLai/Senior-Project

39

9.2.1 Front-End

First, make sure you have Visual Studio 2019 installed to be able to render the site with IIS Express, OLDER VERSIONS

OF VISUAL STUDIO MAY NOT WORK!

Then, make sure you have Node.js and npm installed. If you don’t have Node.js, please download it from this

website https://nodejs.org/en/. If you don’t have npm, please download it from this website https://www.npmjs.

com/get-npm

Now, install the node module with the command:

npm install

Move into the ClientApp folder:

cd ClientApp

Install the required node modules in ClientApp folder:

npm install

Open the SmartJobAdvisor.sln file with Visual Studio 2019

Render the site by clicking IIS Express at the top of VS (Green ’play’ button)

Visual Studio should open a new tab in your browser and display the site.

9.2.2 Back-End

There are two servers in the Back-End which are the SJA Engine and the Rules Engine. The source code of each server

is separated into different folder. Please run the installation command inside the corresponding folder.

9.2.2.1 SJA Engine

Before installing the SJA Engine, please make sure you have Node.js and NPM installed in your computer. If you don’t

have Node.js, please download it from this website https://nodejs.org/en/. If you don’t have npm, please download it

from this website https://www.npmjs.com/get-npm

First, run the command:

npm install

to install the required modules.

Then, run:

https://nodejs.org/en/
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://nodejs.org/en/
https://www.npmjs.com/get-npm

40

chmod +x eval.sh

to add execute permission to the required shell.

Now, start the server with the command:

npm start

You can now access the server with the URL localhost:8000

9.2.2.2 Rules Engine

First, make sure you have tomcat server installed. After that set up the file serving endpoint to serve the files in

the ”rules” folder. Please follow this website to set up the file serviing endpoint https://www.moreofless.co.uk/

static-content-web-pages-images-tomcat-outside-war/.

After set up the file serving endpoint. Change the URL in variable host url to

localhost:8080/serving_folder_path_name/

in file Launcher.java and Job.java.

Now run the server with command:

mvn tomcat7:run

in the Test Project folder and access it with the URL localhost:8080

9.3 User Guide

On the main page, click the Add New Job button to create a new job. Either upload a PDF to the website or select the

PDF Max Coverage by yourself. The website can handle multiple PDF upload at once but the evaluation will be based

on the same settings except for the PDF Max Coverage. After that choose the settings in the form. The paper selection

section will filter the option after you choose the manufacturer. Only the supported option can be selected. Click the

Submit button after all of the information is filled.

The website will jump to the job result page after the recommended settings are generated. You can use the recommended

settings in the printing press and see the reason why the engine chose these values. Uncheck the Justification on top to

toggle the description.

localhost:8000
https://www.moreofless.co.uk/static-content-web-pages-images-tomcat-outside-war/
https://www.moreofless.co.uk/static-content-web-pages-images-tomcat-outside-war/
localhost:8080

41

9.4 API Documentation

9.4.1 SJA Engine

GET

• /paper-db: Return the data of the paper database file.

• /job-history: Return all records of the documented settings.

• /job-history/id: Return specific documented settings.

POST

• /new-job: Takes the input of the user settings and forward to the rules engine. Send back the rules engine output

with the given user settings. Both input and output are in JSON format.

DELETE

• /job-history/remove/[id, id, ...]: Take a list of jobID separated by comma and delete them.

• /test/removeAll: Remove all of the job history records. This endpoint is for testing purposes.

9.4.2 Rules Engine

POST

• /new: Takes the input from the SJA Engine and uses the given rules in the ruleset subject of the input to generate

the result. The input is case-sensitive.

42

10 RECOMMENDED TECHNICAL RESOURCES FOR LEARNING MORE

10.1 Helpful Websites

1) Ant Design Documentation — Excellent documentation for the front-end’s UI framework, Ant Design. Just be

sure to change the version (in the top right) from 4.X to 3.X, since we’re using a slightly older (but still supported)

version.

2) Apache Tomcat Documentation — Official document usually gives the most detailed instruction and explana-

tion.

3) Amazon EC2 Documentation — Amazon’s documentation covers any kind of situation you might face so it’s

very helpful when it comes to setting up their EC2 server.

4) Stack Overflow — As always, stackoverflow is immensely helpful for any CS-related questions (but you

probably already knew that).

5) HP PageWide Presses — Useful for learning more about the HP printing presses for which we were developing

this application.

10.2 Helpful Books

N/A

10.3 Helpful People

• Scott Fairbanks - Talked with our clients about machine-learning and its limitations. He helped narrow the scope

of the project, communicate expectations to our clients (like how much time per week we should spend on the

project), and restructure the project to better fit within our schedules and abilities.

• Prasad Tadepalli - Professor Tadepalli gave us helpful advice on whether we should use Machine Learning to

solve our problem. He also compared the pros and cons of the Machine Learning and decision tree to us. In his

opinion, machine learning is not the best solution because we want to be able to control the output.

https://ant.design/
http://tomcat.apache.org/tomcat-7.0-doc/setup.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://stackoverflow.com/
https://www8.hp.com/us/en/commercial-printers/pagewide-industrial/products.html

43

11 CONCLUSIONS AND REFLECTIONS

11.1 What technical information did you learn?

11.1.1 Cole Jones

I learned a good amount about how complicated the process of finding appropriate settings for an industrial printing

press can be. I didn’t know there were so many different variables involved in the process, like paper type, the chemical

content of the paper, the desired speed at which the user wants the press to run, etc. All of this information was compiled

by experts at HP, which showed me that there’s a whole division at HP specifically for figuring stuff like this out.

11.1.2 Kuan-Yu Lai

I learned a lot of technical information in this project. First is, how to set up different kinds of servers using AWS and

how to operate and maintain them. Second is, how complicated is the HP industrial printing press. The settings are

hundreds of times more complicated than the home printer which requires a well-trained expert to operate a single

printer. Last is, how to convert research results into the program.

11.2 What non-technical information did you learn?

11.2.1 Cole Jones

Over the course of this project, I was able to expand my skills with React and javascript. I’m sure that I know more about

web design than I did before this capstone. I also learned a lot about the importance of documentation, and how to relay

information that’s in my head to another user,specifically someone who is not at all familiar with the project. Our clients

taught me how to make swimlanes and other diagrams to explain the overall flow of the web application,something

that proved useful over the course of the last three terms.

11.2.2 Kuan-Yu Lai

Communication and documentation are extremely important to make efficient progress, especially documentation. Since

the project needs to be view by other people and our client, having clear documentation is very important. Also, the

documentation can also keep track of your progress, makes sure everything is on track.

11.3 What have you learned about project work?

11.3.1 Cole Jones

I learned that the hardest part about project work is not the implementation itself, but choosing what technologies you

want to use beforehand. At the beginning of this project, we had an idea for a technology we wanted to use, but as we

uncovered more information about that project and what our clients wanted out of it, we changed technologies more

than once.

11.3.2 Kuan-Yu Lai

I learned that a good plan leads to a good project. To generate a good plan, it requires deep research to find the best

component of your solution. Then, assemble these components and generate a plan that helps you develop your project

efficiently.

44

11.4 What have you learned about project management?

11.4.1 Cole Jones

I learned that time management is very important. Just because I had plenty of time to work on something didn’t mean

I was able to just put it aside until right before it needed to get done,because there were many times where my partner’s

work on the backend of the site required changes on the front-end. I learned that coordinating this work can be very

difficult, especially when dealing with a 15 hour time difference. I also learned that it can be difficult to work without

a plan, and that laying out a design for the interaction between the front and back-ends was helpful in keeping us on

track while we worked on separate components.

11.4.2 Kuan-Yu Lai

Keep everything organize even at the beginning because it’s hard to reorganize when the project becomes larger and

larger. Also, be sure to use a version control system because you want to make sure your work won’t break the previous

working version of the project.

11.5 What have you learned about working in teams?

11.5.1 Cole Jones

I learned that even though you segment your work (I focused on the front-end website while my partner focused on the

back-end control engine) you’re never going to only focus on that partition. There were many times in which the way I

designed my website influenced the way my partner needed to design the backend, and vice versa. I also learned that

communication with a timely response is very important. There were a few times that I was late to act on a received

message, much to the annoyance of my partner, who had to wait until I made a change to continue on his own work.

11.5.2 Kuan-Yu Lai

Lack of communication will waste a lot of time since different people will have different coding styles and ideas. When

two programs are having conflicts, it takes a lot of time to merge it together. Also, you still have to understand what

your teammate is doing even you are not responsible for it. This will be helpful when team members are debugging

while they merge their work together.

11.6 If you could do it all over, what would you do differently?

11.6.1 Cole Jones

I would spend more time planning before implementing the code. Also, I would have skipped trying to work with

machine-learning entirely, since we wasted a lot of time settling on the technology before we actually got around to

working with it. We spent weeks getting Drools to work and learning about it, before quickly switching over to our

current technology, JEasy Rules Engine. Since we had spent all of Fall term figuring this out, if we had skipped right to

JEasy we would have had several more weeks to work on the project.

11.6.2 Kuan-Yu Lai

The documentation part and the timeline will be the two main things that I want to improve. Document what you

change and what feature of your program is developed and working can save a lot of time for us. As for the timeline,

I often underestimate the time I need to implement the feature. This cause the team to push our schedule later several

times. Therefore, estimating the time I need precisely will make the project development progress smoother.

45

APPENDIX A

ESSENTIAL CODE LISTINGS

A.1 Front-End

Fig. 5: The function that fetches the paper database from the back-end

Fig. 6: The JSX that generates a table with click-based row selection

46

Fig. 7: The function that handles POSTing the job to the back-end

47

Fig. 8: An example of the layout of a form item

Fig. 9: The function that sends the user’s PDF(s) to the back-end to analyze and obtain a maximum ink coverage value

48

A.2 Back-End

Fig. 10: The function parse the input from the front-end into what rules engine wants

Fig. 11: The function handle the evaluation of the uploaded PDF file

49

APPENDIX B

WEBSITE PHOTOS

Fig. 12: Main page of the SJA website

Fig. 13: Job page of the SJA website

50

Fig. 14: Job results page of the SJA website

Fig. 15: History page of the SJA website

51

APPENDIX C

RESPONSE TO CODE REVIEW CRITICISMS

C.1 Front-End

Criticism Action

“You need an about page to teach the user how to use the

site.”

Instead of adding an about page, info popups were

added to the New Job form to explain what each field

means. I think this is enough, since the users of the site

are going to have a vague idea of what all the options

mean.

“I would like to see more comments...” Many comments were added to the code.

“I did not see unit tests.” We determined that unit testing was not worth our time,

although this is something we may explore between the

code freeze and the expo, just for our clients

“The presenters said that they are waiting for a new

ruleset from their employer, so it seems like once that

is handled the requirements will be met.”

New ruleset was given to us by our client and fully

implemented.

“It’s possible that refactoring could be done, because

there are some very long functions.”

Some code refactoring was done to make functions more

efficient.

“I am sure there are possible ways to improve the code,

but I think the current react code is efficient enough that

the marginal benefit of rewriting it is not worth the extra

time.”

Some code refactoring was done to make functions more

efficient. Some of the more complicated functions were

not rewritten because of time constraints.

“I did not see any unit tests for the react code. However,

I am not a strong believer in unit tests for react code as I

don’t really see the benefit in it, so I wouldn’t recommend

the team spend time on it anyways.”

Unit tests were not added for the UI. This is something

we considered doing for our clients after the code freeze,

but I did not think it was worth the time to do it before

then.

“In JobResults.js, in the fetchJob function, it uses both

Async/Await and .then(). I know that’s really picky, but

it really stuck out to me.”

Attempted to fix this by only using Async/Await

or .then(), but it only works with both. Without

Async/Await, the react code moves along before the

function can finish. Without .then(), the API call moves

along before it finishes. I decided to leave the code

as-is, since it doesn’t really hurt anything to use both

Async/Await and .then().

52

C.2 Back-End

Criticism Action

”The names of variables and classes seemed very explicit

in what they meant. I would like to see more comments,

especially in the more complicated parts of the backend

code.”

More comments added for both back-end servers.

”I saw some sections of the code labeled “old”. I’m

assuming the comment label means these bits of code

are no longer useful, so they should be taken out.”

Old code removed after the code clean up.

”I did not see unit tests. During the presentation Postman

was used and I saw a lot of tests, but there did not seem

to be any structure among them. I would recommend

exporting a collection of Postman tests and storing it on

the repo for other people to use to test the program.”

Sample Postman test case added in the ReadMe file.

”The presenters said that they are waiting for a new

ruleset from their employer, so it seems like once that

is handled the requirements will be met.”

New ruleset file updated.

”I could not find any obvious abstractions, or a way

to write functionally equivalent code. Its possible that

refactoring could be done, because there are some very

long functions.”

Helper functions added to reduce the duplicated code.

”Setting up tomcat was a challenge. I know I need a

tomcat file servelet. The ReadMe for the RulesEngine

states I must “move all the Json and YML files to that

folder to serve it to the server”. What files must I copy

into the /static folder for tomcat? That is the part I am

stuck on.”

Update the instruction to make it more clear.

	Forward
	Introduction to Project
	Who Requested It?
	Why Was It Requested?
	What Is Its Importance?
	Who Was/Were Your Client(s)?
	Who Are the Members of Your Team?
	What Were Their Roles?
	What Was the Role of the Clients?
	How Did the Changes in Spring Term Affect Your Deliverables?
	How Do You Recommend the Next Team Use This Final Documentation to Pick Up Where You Left Off?

	Requirements Document
	Change Table
	Overview
	Glossary of Terms
	Use Cases
	Implementation of Decision-Making Engine
	Use of Decision-Making Engine in Pre-Press Check
	Use of Decision-Making Engine to Generate Job Settings for Job Ticket
	Use of Decision-Displaying Current Operating Task and Progress
	Use of GUI to Queue Jobs
	Use of API Calls to Queue Jobs
	Selection of Rules for Engine

	Tools & Applications
	Existing Internal Tool
	Decision-Making Engine
	GUI
	API
	Database

	Gantt Chart
	Gantt Chart Analysis

	Design Document
	Change Table
	Overview
	Scope
	Purpose
	Description of stakeholders

	Glossary of Terms
	Timeline
	Rules Engine
	Description of Design
	Design Viewpoints
	Context
	Composition
	Dependency
	Interaction

	Design Rationale
	Design Implementation

	Database
	Description of Design
	Design Viewpoints
	Context
	Composition
	Dependency
	Interaction

	Design Rationale
	Design Implementation

	Website
	Description of Design
	Design Viewpoints
	Context
	Composition
	Dependency
	Interaction

	Design Rationale
	Design Implementation

	Conclusion
	References

	Tech Review Document - Kuan-Yu Lai
	Introduction
	Piece1: Analysis of input data for generation of outputs
	Drools
	Google Cloud Platform
	TensorFlow

	Piece2: Hosting the feature on the web
	Oregon State University engineering server
	Heroku
	Amazon Web Services

	Piece3: Storage of outputs and profiles
	MYSQL
	MongoDB
	Redis

	Conclusion
	References

	Tech Review Document - Cole Jones
	Introduction
	Piece 1: Capture of Input Data from User
	User Interface
	Email
	Hot Folder

	Piece 2: Tool Interaction Using API
	REST
	SOAP
	JSON-RPC

	Piece 3: Presentation of Tool to User
	ReactJS
	Bootstrap
	Angular

	Conclusion
	References

	Blog Posts
	Fall Term
	Cole Jones
	Kuan-Yu Lai

	Winter term
	Cole Jones
	Kuan-Yu Lai

	Final Poster
	Project Documentation
	How does the project work?
	Install Guide How to run it
	Front-End
	Back-End
	SJA Engine
	Rules Engine

	User Guide
	API Documentation
	SJA Engine
	Rules Engine

	Recommended Technical Resources for Learning More
	Helpful Websites
	Helpful Books
	Helpful People

	Conclusions and Reflections
	What technical information did you learn?
	Cole Jones
	Kuan-Yu Lai

	What non-technical information did you learn?
	Cole Jones
	Kuan-Yu Lai

	What have you learned about project work?
	Cole Jones
	Kuan-Yu Lai

	What have you learned about project management?
	Cole Jones
	Kuan-Yu Lai

	What have you learned about working in teams?
	Cole Jones
	Kuan-Yu Lai

	If you could do it all over, what would you do differently?
	Cole Jones
	Kuan-Yu Lai

	Appendix A: Essential Code Listings
	Front-End
	Back-End

	Appendix B: Website Photos
	Appendix C: Response to Code Review Criticisms
	Front-End
	Back-End

