
ECE 44X Capstone Document

Group 10 - Lost Without Direction
Using GPS to improve communications and tracking for the OSU Robotics Club Mars Rover

Team Members
Angel Huang
Kira Kopcho
Sean Bullis
Austin Grubowski

Table of Contents

1. Overview..7
1.1. Executive Summary... 7
1.2. Team Contacts and Protocols.. 7
1.3. Gap Analysis.. 8
1.4. Timeline.. 9
1.5. References and File Links..9

1.5.1. References...9
1.5.2. File Links..9

1.6. Revision Table.. 9
2. Impacts and Risks.. 11

2.1. Design Impact Statement... 11
2.2. Risks...12
2.3. References and File Links..14
2.4. Revision Table.. 14

3. Top-Level Architecture...16
3.1. Block Diagram.. 16
3.2. Block Descriptions..16
3.3. Interface Definitions..20
3.4. References and File Links..23
3.5. Revision Table.. 23

4. Block Validations.. 24
4.1. Tracking Algorithm..24

4.1.1. Description...24
4.1.2. Design..24
4.1.3. General Validation..26
4.1.4. Interface Validation.. 27
4.1.5. Verification Process... 31
4.1.6. References and Files Links..32
4.1.7. Revision Table..32

4.2. Rover GPS... 34
4.2.1. Description...34
4.2.2. Design..34
4.2.3. General Validation..37
4.2.4. Interface Validation.. 37
4.2.5. Verification Process... 39
4.2.6. Revision Table..39

4.3. Transmitter Hardware...40

4.3.1. Description...40
4.3.2. Design..40
4.3.3. General Validation..44
4.3.4. Interface Validation.. 45
4.3.5. Verification Process... 50
4.3.6. References and Files Links..52
4.3.7. Revision Table..52

4.4. Receiver Hardware...54
4.4.1. Description...54
4.4.2. Design..54
4.4.3. General Validation..55
4.4.4. Interface Validation.. 55
4.4.5. Verification Process... 58
4.4.6. References and Files Links..59
4.4.7. Revision Table..59

4.5. Turntable Controller..60
4.5.1. Description...60
4.5.2. Design..60

a) Interfaces and Black Box... 60
b) Design Documents.. 61

4.5.3. General Validation..69
a) TB6600 Sub-PCB.. 70
b) Arduino Carrier Board..71
c) 5V, 9V Regulator.. 71
d) UART Receiver..71
e) RS422 Transceiver.. 72
f) Clock Generation.. 72

4.5.4. Interface Validation.. 72
4.5.5. Verification Process... 77
4.5.6. References and Files Links..80
4.5.7. Revision Table..81

4.6. Turntable.. 82
4.6.1. Description...82
4.6.2. Design..83
4.6.3. General Validation..86
4.6.4. Interface Validation.. 88
4.6.5. Verification Process... 90
4.6.6. References and Files Links..92
4.6.7. Revision Table..93

4.7. User Interface...93
4.7.1. Description...93

4.7.2. Design..94
4.7.3. General Validation..95
4.7.4. Interface Validation.. 96
4.7.5. Verification Process... 99
4.7.6. References and Files Links..100
4.7.7. Revision Table..100

4.8. RX Code...101
4.8.1. Description...101
4.8.2. Design..101
4.8.3. General Validation..103
4.8.4. Interface Validation.. 103
4.8.5. Verification Process... 104
4.8.6. References and Files Links..104
4.8.7. Revision Table..105

4.9. TX Code... 105
4.9.1. Description...105
4.9.2. Design..106
4.9.3. General Validation..106
4.9.4. Interface Validation.. 106
4.9.5. Verification Process... 107
4.9.6. References and Files Links..108
4.9.7. Revision Table..108

5. System Verification Evidence..109
5.1. Universal Constraints... 109

5.1.1. The system may not include a breadboard..109
5.1.2. The final system must contain a student designed PCB......................................109
5.1.3. All connections to PCBs must use connectors...111
5.1.4. All power supplies in the system must be at least 65% efficient.......................... 113
5.1.5. The system may be no more than 50% built from purchased 'modules.'.............114

5.2. Requirements... 115
5.2.1. System Accuracy... 115

5.2.1.1. Project Partner Requirement...115
5.2.1.2. Engineering Requirement... 115
5.2.1.3. Testing Method..115
5.2.1.4. Verification Process...116
5.2.1.5. Pass Condition.. 116
5.2.1.6. Testing Evidence... 116

5.2.2. System Tracking Speed... 116
5.2.2.1. Project Partner Requirement...116
5.2.2.2. Engineering Requirement... 116
5.2.2.3. Testing Method..116

5.2.2.4. Verification Process...116
5.2.2.5. Pass Condition.. 117
5.2.2.6. Testing Evidence... 117

5.2.3. System Field of View..117
5.2.3.1. Project Partner Requirement...117
5.2.3.2. Engineering Requirement... 117
5.2.3.3. Testing Method..117
5.2.3.4. Verification Process...117
5.2.3.5. Pass Condition.. 117
5.2.3.6. Testing Evidence... 118

5.2.4. Noise Tolerance... 118
5.2.4.1. Project Partner Requirement...118
5.2.4.2. Engineering Requirement... 118
5.2.4.3. Testing Method..118
5.2.4.4. Verification Process...118
5.2.4.5. Pass Condition.. 118
5.2.4.6. Testing Evidence... 118

5.2.5. System Isolation...118
5.2.5.1. Project Partner Requirement...118
5.2.5.2. Engineering Requirement... 118
5.2.5.3. Testing Method..118
5.2.5.4. Verification Process...119
5.2.5.5. Pass Condition.. 119
5.2.5.6. Testing Evidence... 119

5.2.6. System Portability.. 119
5.2.6.1. Project Partner Requirement...119
5.2.6.2. Engineering Requirement... 119
5.2.6.3. Testing Method..119
5.2.6.4. Verification Process...119
5.2.6.5. Pass Condition.. 119
5.2.6.6. Testing Evidence...120

5.2.7. System Setup...120
5.2.7.1. Project Partner Requirement.. 120
5.2.7.2. Engineering Requirement... 120
5.2.7.3. Testing Method..120
5.2.7.4. Verification Process.. 120
5.2.7.5. Pass Condition..120
5.2.7.6. Testing Evidence...120

5.2.8. System Update Rate..121
5.2.8.1. Project Partner Requirement.. 121
5.2.8.2. Engineering Requirement... 121

5.2.8.3. Testing Method..121
5.2.8.4. Verification Process.. 121
5.2.8.5. Pass Condition..121
5.2.8.6. Testing Evidence...121

5.3. References and File Links..121
5.4. Revision Table.. 121

6. Project Closing... 123
6.1. Future Recommendations.. 123

6.1.1. Technical Recommendations...123
6.1.2. Global Impact Recommendations..123
6.1.3. Teamwork Impact Recommendations..124

6.2. Project Artifact Summaries with Links.. 124
6.3. Presentation Materials..125

Appendix.. 126
File Links..126
Code Snippets... 128

1. Overview
1.1. Executive Summary
While tracking exploration vehicles on Mars, the rover must have a communication link

to a ground station to send and receive data signals to and from the rover. When the rover
moves too far away from the ground station or when the line of sight becomes obstructed the
ability to receive these signals can be lost. This project is aimed toward improving the
communication link of the Oregon State University Robotics Club’s Mars Rover by implementing
a radio frequency communication link between the ground station and the rover whose sole
purpose is to optimize the data signal strength. These improvements will be tested at the
Canadian International Rover Challenge.

The project will incorporate a transmitter on the rover which will transmit a signal on a
frequency of 915MHz using the LoRa protocol. Originally, the plan was to use an antenna array
which would be multiplexed with a microcontroller development board to generate a
pseudo-doppler effect to determine the direction of the beacon signal [1]. Upon further research,
it was determined that this was not going to be a viable option for directional finding. We have
decided to replace the pseudo-doppler antenna with a small GPS module which will send data
to the transmitter on the rover. The transmitter on the rover will then broadcast the GPS data to
the ground station. The ground station will also have a GPS module with a fixed location. The
difference in the coordinates will determine the heading of the rover relative to the ground
station.

The transceiver itself will use an RP2040 microcontroller and a LoRa based modem
module to send and receive data to and from the rover and base station. A GPS module
mounted on the transceiver will pick up location information from the satellite and send it to the
microcontroller via the PCB. The PCB itself will have a USB connection that powers it at 5V, and
the receiver will have a communication line to the base station. The RP2040 will be supported
by various peripherals including a clock, flash memory and a voltage regulator. In the case of
rover failure a battery backup system is implemented. This is done with a power mux and a 5V
boost converter connected to a 3.7V LiPo battery.

1.2. Team Contacts and Protocols
The team will primarily communicate using the emails listed below in addition to

in-person or virtual meetings.

Sean Bullis - bulliss@oregonstate.edu
Kira Kopcho - kopchok@oregonstate.edu
Austin Grubowski - grubowsa@oregonstate.edu
Angel Huang - huangang@oregonstate.edu

Below is the team protocols table.

mailto:bulliss@oregonstate.edu
mailto:kopchok@oregonstate.edu
mailto:grubowsa@oregonstate.edu
mailto:huangang@oregonstate.edu

Topic Protocol Standard

Task Management Team will use Jira and an Agile
Development structure when
organizing tasks

At each team meeting we will
review the kanban board and
assess where each team member
is on their tasks. When working on
a task, it should be in the “In
Progress” column. When
complete, it should be in the
“Done” column

Team meetings Team will meet at least bi-weekly,
once in class and once outside of
class

Meeting formats outside of class
will be held on Discord during Fall
Term. As we move into the design
and prototype phases, it is
expected that team members can
attend in person meetings.

Mars Rover
Meetings

Team members will take
advantage of Mars Rover
workdays

While joining Mars Rover isn’t a
requirement, the lab space is open
for members of the team to work
in on Saturdays from 10AM - 4PM.
As we move into the
manufacturing phase, members
can utilize that time as they see fit

Documentation All documentation should be
stored in the RDF Capstone folder
in the Google Drive

Documents should be placed in
the Google Drive in a timely
manner once they’re created.
Each team member is responsible
for keeping the folder organized

Table 1.2.1 - Team Protocols

1.3. Gap Analysis
The purpose of this project is to enhance and upgrade the communications capabilities

of the Oregon State University Robotics Club's Rover through the creation of an antenna suite
that can accurately track the rover and facilitate high gain communications between the rover
and the base station. In order to improve communications, our plan is to send GPS data via
LoRa packets to a receiver on the ground station [2]. Based on the difference in coordinates of
where the antenna is located and where the rover is, we will rotate our antenna to match where

the signal is coming from. An individual in our group will create a custom PCB to act as the rover
transmitter. There will also be a similar receiver module on the antenna mount. The current
communications equipment lacks the ability to maintain contact when the rover is traversing hilly
terrain. Our communications and tracking suite will be used by the OSU Robotics Club Rover
team in future competitions.

1.4. Timeline

Figure 1.4.1 - Jira Timeline

1.5. References and File Links
1.5.1. References

[1] W. Hofman. “Whats a (psuedo-) Doppler Radio Direction Finder”. PA8W Amateur Radio.
http://www.paluidsprekers.nl/pa8w/dopplerRDF.html (Accessed Nov. 4, 2022)
[2] J. Halstead. “LoRa Localization” Link Labs. https://www.link-labs.com/blog/lora-localization
(Accessed Nov. 11 2022)

1.5.2. File Links
1) Jira Timeline

1.6. Revision Table

Author Date Description

Sean Bullis 10/14/22 Section Creation

Austin Grubowski 10/14/22 Added Gap Analysis

Kira Kopcho 10/14/22 Add Timeline and Protocols
Table

Austin Grubowski 11/4/22 Updated Gap Analysis

Kira Kopcho 11/4/22 Minor revisions to executive
summary and added references
and link to timeline

Sean Bullis, Austin Grubowski,
Kira Kopcho, Angel Huang

11/18/22 Revision to latest developments
Clarification of GPS and LoRA
radio system

http://www.paluidsprekers.nl/pa8w/dopplerRDF.html
https://www.link-labs.com/blog/lora-localization
https://drive.google.com/file/d/1CoS4GB7AdC4U7T53uIHK8zXw_XgSJR3a/view?usp=sharing

Added link to Jira project site
Added references
Added datasheet links to
appendix

Sean Bullis 1/25/23 Updated Executive Summary
and added section about the
transceiver hardware

Sean Bullis 5/1/23 Minor changes to make
paragraphs more concise

Angel Huang 5/14/23 Added image captions
Updated/fixed formatting

2. Impacts and Risks
2.1. Design Impact Statement

a) Public Safety and Welfare
The rover tracking system has been designed with these facts in mind. First and

foremost, the design must abide by United States and Canada radio regulations. The LoRa
radio modules used are low power (10 mA of typical current) and transmit on the 900 MHz band
which is a common commercial and industrial frequency [2]. We foresee no health issues from
the antenna’s radiant energy given the prevalence of the 900 MHz band and low-power
components in use.

For licensing purposes, LoRa radios are considered frequency hopping devices which
means they are subject to certain transmission requirements. In the United State, the LoRa
modems are compliant under FCC Part 15.247 which specifies that frequency hopping devices
in the 902-928MHz band shall use no less than 50 frequencies and the maximum time they can
transmit on each frequency cannot be more than 0.4 seconds in a 10 second period [3].

In Canada, LoRa radios fall under RSS-247 which is similar to the US FCC specification
except that the limit for timing is no more than 0.4 seconds of transmission per frequency in a 20
seconds period [4]. Devices under RSS-247 and Part 15 are considered license exempt devices
meaning that individuals operating them do not need to hold a special license [1][4]. Because of
this, the legality of the use of these LoRa radios is not an issue.

b) Cultural and Societal
Currently the 900 MHz band is used for amateur TV and radio, along with other small

profile communication systems such as baby monitors, RFID readers, and SCADA (data
acquisition) systems [5]. The low transmission power this project uses will only occur during
competition tasks so any interference generated will be quick, 1 - 1.5 hour maximum, and
minimal, following the inverse-square law. Additionally, this 900 MHz band hosts many
non-essential systems so interference should not be affecting life or safety systems.
Accordingly, the societal impact of the radio interference of this project is minimal.

c) Environmental
Waste generated during the fabrication of this project has been considered, especially

regarding the enclosure which is 3D printed using PLA (Polylactic Acid). PLA is non-toxic to
biological organisms and is biocompatible and will naturally degrade into lactic acid. But, it
should be industrially composted or recycled [6]. Still, we see no significant impact from the use
of PLA on the environment.

Other waste such as aluminum or steel structural elements can be disposed of through
metal recycling programs provided by Oregon or OSU. Similarly, electrical components can be
safely recycled/properly disposed of through the same programs.

d) Economic
Lastly, the economic state of the semiconductor industry and supply is concerning and

this project is, of course, going to use semiconductor devices. The current World Semiconductor
Trade Statistics [7] indicates the value of various semiconductors to be in the billions of USD:

the smallest market, sensors, amounts to > 22 billion. Using this as a metric of device
production, we do not anticipate this project having an adverse effect on the semiconductor
supply due to the small scale of parts, dozens at most, required.

2.2. Risks
Table 2.2.1 outlines the anticipated risks for the project. Each category has a risk

assessment indicating the severity of the risk toward the completion of the project and indicators
for identifying when the risk may have higher likelihood of occuring.

ID Risk Category Probability Impact Performance
Indicator

Action

1 Team Member
Absence

Organizatio
n

Medium Medium Short notice of
absence /
Informed by
Member

Determine
period of
absence
Transfer time
critical work

2 Severe Team
Member Illness

Public
Safety

Low High Informed by
Member

Redistribute
work
Rescope and
reprioritize
tasks
Follow up with
Instructors

3 Battery / Wire /
PCB Fire

Safety Low High Fire! Acquire
electric fire
rated
extinguisher
Extinguish
Treat injuries /
911 if needed

4 Antenna
Collapse

Public
Safety

Low High Mount on
Ground / Tower
Collapse

Provide
medical
assistance
Rebuild
antenna if still
serviceable
Follow up with
CIRC officials
Treat injuries /
911 if needed

5 Loose Clothes or
Body Parts
Caught in
Mechanism

Public
Safety

Low Medium Mechanism
Jam / Calls for
Assistance

Disable
antenna
Reverse
mechanism(s)
to release
foreign object
Treat injuries /

911 if needed

6 Part Shortage Technical Medium High Out of Stock Redesign /
find
replacement

7 Shipping Delay Technical Medium Medium Behind
Deadline /
Delivery Date

Communicate
with Team
Members /
Instructors
Attempt to
change to
expedited
shipping

8 PCB Delay Technical Medium High Behind
Deadline /
Delivery Date

Communicate
with Team
Members /
Instructors
Attempt to
change to
expedited
shipping

9 Lack of Electrical
/ Mechanical
Support on
Rover

Technical Low Med Lack of
Mounting /
Battery Power
Fuse Box Full

Work with
OSURC
Rover Club
Reallocate
Rover
resources
Purchase /
fabricate
additional
resources

10 Software
Incompatibility

Technical Med Med Version /
Dependency
Mismatch

Research
replacement
software
package(s)
Implement

11 Weather
Damage

Environme
nt

High High Mechanism
Failure /
Misbehavior

Identify failure
point(s)
Attempt repair
Replace with
spare if
needed

12 Transport /
Setup Damage
(Significant
Emotional Event)

Environme
nt

Low High Mechanism
Damage

Identify failure
point(s)
Attempt repair
Replace with
spare if
needed

13 Significant
Tracking
Inaccuracies

Technical Med High Visual
Misalignment

Recalibrate /
Reboot
Check
antenna
mount

Table 2.2.1 - Risk and Mitigation Table

2.3. References and File Links
2.3.1. References

[1] Canadian Space and Technology Advancement Group. “CIRC 2023 Summer Rules and
Guidelines- Communications.” circ.cstag.ca. https://circ.cstag.ca/2023/rules/ (accessed Nov. 3,
2022).
[2] SX1276/77/78/79 - 137MHz to 1020MHz Low Power Long Range Transceiver, SX1276, Rev.
7, Semtech, 2020. [Online]. Available:
https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#diagrams
[3] Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz, 47 CFR
15.247, Federal Communications Commission, Apr. 1989. [Online] Available:
https://www.law.cornell.edu/cfr/text/47/15.247
[4] Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and
Licence-Exempt Local Area Network (LE-LAN) Devices, RSS-247, Industry Canada, Feb. 2017.
[Online]. Available:
https://ised-isde.canada.ca/site/spectrum-management-telecommunications/en/devices-and-equ
ipment/radio-equipment-standards/radio-standards-specifications-rss/rss-247-digital-transmissio
n-systems-dtss-frequency-hopping-systems-fhss-and-licence-exempt-local
[5] A. Milne, “Let's talk about 900,” RF Spectrum Tools and Antennas for Wireless Microphones.
[Online]. Available: https://www.rfvenue.com/blog/2014/12/14/lets-talk-about-900. (accessed
Nov. 4, 2022).
[6] DeStefano, Vincent, et al. “Applications of PLA in Modern Medicine.” Engineered
Regeneration, The Authors. Publishing Services by Elsevier B.V. on Behalf of KeAi
Communications Co. Ltd., 2020, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474829/
(accessed Nov. 4, 2022).
[7] H. Kevin, L. Elise, T. Akemi, C. Gabriel, B. Katherine, “WSTS Semiconductor Market
Forecast August 2022.” Accessed: Nov. 4 2022. [Online]. Available:
https://www.wsts.org/esraCMS/extension/media/f/WST/5636/WSTS_nr-2022_08.pdf

2.3.2. File Links

2.4. Revision Table

Author Date Description

Sean Bullis 11/03/2022 Added risk table

Austin Grubowski 11/04/2022 Added references, file links, and

https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#diagrams
https://ised-isde.canada.ca/site/spectrum-management-telecommunications/en/devices-and-equipment/radio-equipment-standards/radio-standards-specifications-rss/rss-247-digital-transmission-systems-dtss-frequency-hopping-systems-fhss-and-licence-exempt-local
https://ised-isde.canada.ca/site/spectrum-management-telecommunications/en/devices-and-equipment/radio-equipment-standards/radio-standards-specifications-rss/rss-247-digital-transmission-systems-dtss-frequency-hopping-systems-fhss-and-licence-exempt-local
https://ised-isde.canada.ca/site/spectrum-management-telecommunications/en/devices-and-equipment/radio-equipment-standards/radio-standards-specifications-rss/rss-247-digital-transmission-systems-dtss-frequency-hopping-systems-fhss-and-licence-exempt-local
https://www.wsts.org/esraCMS/extension/media/f/WST/5636/WSTS_nr-2022_08.pdf

revision table sections

Sean Bullis 11/04/2022 Filled out Risk Table

Angel Huang 11/18/2022 Expanded Risk Table
Organized by risk

Sean Bullis 4/28/2023 Added Design Impact Statement
Section and content

Angel Huang 5/14/23 Updated/fixed formatting

3. Top-Level Architecture
3.1. Block Diagram
This section showcases the project system at a high level using two different diagrams.

The first diagram is a black box diagram that lists all the interfaces of our system that
communicate with the outside environment. The second diagram is a system wide block
diagram that shows how each block of our project communicates with each other.

Figure 3.1 - Top Level Black-Box View

3.2. Block Descriptions
The following table defines each block, champion and provides a technical and/or

functional description of functionality.

Block Name,
Champion

Block Description

Transmitter
Hardware
Champion:
Sean Bullis

This block is the hardware that receives the GPS location of the rover via
satellite and sends it to the base station. The transmitter receives GPS data
using a Ublox NEO-7 based GPS module breakout board from GoouuuTech.
The microcontroller on the transmitter is an RP2040 which will uptake the GPS
data from the GPS module via UART and transport it into the TX code block.
After the TX code block performs its operations the transmitter will receive
formatted GPS data from the TX code block via SPI through the RP2040 and
will transmit it to the receiver PCB via LoRa protocol. The inputs to the system
are 5V input from either a battery boost circuit or 5V from USB power, the GPS
data being received by the GPS submodule, and input from the transmitter
code block The output is GPS data from the TX code to the receiver hardware

via RF.

TX Code
Champion:
Sean Bullis

Code that processes GPS information from the Rover GPS and sends it to the
LoRa modem.

Rover GPS
Champion:
Austin
Grubowski

The Rover GPS Block is a library of code that is responsible for sampling
UART data received on one of the RX UART pins of the RP2040
Microcontroller chip, parsing said data, storing said data in the corresponding
member variable of the GPS data struct, and then passing this data into the
main transceiver code (TX Code) when called to do so. The data fed to the
RP2040 Microcontroller chip from the GPS module via the UART connection is
in the form of NMEA sentences which contain values for the latitude and
longitude of the module, the time of the reading, the number of satellites the
module is receiving information from, and the altitude, as well as several other
received values that are not needed for our purposes. The Rover GPS code
library contains a parsing function that first looks for the specific NMEA
sentence that begins with “$GPGGA.” The parsing function then goes value by
value, saving only the latitude, longitude, and time of receipt to the
corresponding members of the NMEA data struct. The main transceiver code,
then calls on the members of this struct, reading out the contained data to be
transmitted to the next transceiver via the LoRa modem on the transceiver
hardware. The GPS module on the other side of the UART connection, is the
Gouuu Tech GT-U7 GPS module. This GPS module was sourced from Amazon
and selected for its ease of use as well as the ability to interface with it in a
number of ways that are beneficial to our project. As well as being directly
mounted to the transmitter hardware, a separate Gouuu Tech GT-U7 GPS
module is connected to the rover base station over a USB connection.

RX Code
Champion:
Austin
Grubowski

Code that receives condensed GPS data sent, via the LoRa modem, from the
rover’s transmitter and passes that data to the ground station, via the
transceiver’s USB port, to be processed by the tracking algorithm.

Turntable
Champion:
Angel Huang

The Turntable is an Actuator based block designed to mount a Ubiquity
directional antenna: this antenna is different from the GPS antennas in other
blocks. While being an actuator, the block does not output any motion: all
motion is contained within the block. All internal motion is strictly rotational in
the horizontal plane. Overall physical structure comprises three
subassemblies is based on extruded aluminum L-channel, structural framing,
and plastic for high strength and low weight: the majority of weight will be
contributed by the Ubiquity antenna! A foundation sub-assembly provides an
electrical box and adjustable feet for unlevel terrain. The tower sub-assembly
resembles a horizontal "U" to provide support for the antenna turntable from
above and below for rigidity. Finally, the turntable itself is a cradle built around
the Ubiquity that mounts to two Lazy Susan mechanisms on the tower
sub-assembly. To provide angular positioning feedback, the Turntable
mounts an encoder sub-system based around the AS5048A magnetic encoder.
It is mounted on the tower sub-assembly and the magnet is on the cradle
sub-assembly. Data between Turntable and Turntable-Controller is sent through
an RS422 network to reduce negative effects of EMI (Electromagnetic
Interference) based on the SN75C1168N full duplex (simultaneous send and
receive) component. 5V power is provided from the Turntable-Controller block.

Turntable-Cont
roller
Champion:
Angel Huang

The Turntable-Controller is a PCB based block designed to process
heading commands from the Tracking Algorithm and UI (user interface) blocks,
receive encoder data and issue motor commands to the Turntable block. In the
context of the system, the Turntable-Controller acts as motion controller and a
data processor: not that it does not handle GPS data from the transmit/receive
blocks or perform bearing computations. Importantly, this block allows
automatic Turntable positioning with just 12 or 24 VDC power and heading
commands from power-on to off.
Built around an Arduino Micro microcontroller, the block is designed for
flexibility and upgradeability. Each major sub-system receives a sub-PCB to
support circuits: there will be one carrier, and at most two motor drivers. This is
done to reduce costly reworks if all circuits were on a single PCB and allow
field upgrading or repairs of subsystems. Flexible cabling will connects
sub-PCBs together within the block. All functions such as initialization, data
processing, C&C (command and control) are automatic after power up.
Initialization sets the Arduino up then puts control variables and commands the
Turntable block to point North. Several loops periodically check Turntable
position (10 times a second), processes commands sent via UART (once a
second), and issues motor control commands (1000 times a second).

UI
Champion:
Kira Kopcho

The purpose of the user interface is to provide visualization of the data sent
and received by the tracking algorithm as well as provide a method of manually
controlling the rotation of the turntable if needed. Both the rover and base
station are equipped with GPS modules that send geographic coordinates via
USB to the hardware the UI runs on. The idea is that these reported
coordinates can then be displayed on the UI so the end user can observe
where both the base and the rover are located at all times. At minimum, these
coordinates should be updated every 5 seconds to ensure that the data that’s
being sent to the user is as accurate as possible. In addition the bearing angle
calculated by the tracking algorithm is also displayed on the UI. This allows the
user to verify the output of the tracking algorithm that is being sent via serial to
the turntable module. This angle should update at a minimum rate of 1 update
every 5 seconds as well. The UI also provides the end user with a way to send
manually defined angles to the turntable. This is meant as a failsafe in case the
tracking algorithm is not properly operating. This is important because the rules
of the competition the rover compete in prohibit team members from directly
interacting with the rover or its communications equipment while competition
tasks are underway. By including an interface for manually controlling the angle
of rotation of the turntable, the end user can tweak the positioning of the
turntable without having to manually interact with it.

Tracking
Algorithm
Champion:
Kira Kopcho

The idea behind the tracking algorithm is to keep track of both the geographic
position of the main communications antenna for the rover and the geographic
position of the rover itself. In turn, these positions will be used to orient the
main communication antenna towards the rover by providing an angle of
rotation to the turntable module. Both the rover and the antenna mount have
GPS modules mounted on them. The tracking algorithm takes latitude and
longitude coordinates from both of these sources and then computes the
azimuth (forward bearing) based on them. Basically, azimuth is the horizontal
angle on a compass, with true north being 0 degrees and then the rest of the
cardinal directions being determined by moving clockwise around a circle. The
calculation of this azimuth is produced by feeding both the rover and base
coordinates into a series of trigonometric equations. The resulting azimuth from
the tracking algorithm is fed to the motor controllers on the turntable module to
rotate the antenna in the direction of the rover. Keeping with the engineering
requirements of the system, the resulting azimuth will be bound between 0 and
360 degrees. This is to ensure compatibility with the motor driver code on the
turntable module. Additionally, the tracking algorithm code itself will provide an
updated azimuth at the slowest acceptable speed of 1 update every 5 seconds.
For verification purposes, the tracking algorithm will display time stamps
alongside the data it receives and each azimuth update it sends.

Tranciever
Enclosure
Champion:
Austin
Grubowski

This block is the enclosure that stores the transceiver hardware. This will be 3D
printed and have a switch and LED to turn on and indicate whether the battery
back up system is on. In addition there will be USB port with a removable panel
which can be used for flashing or powering the device. A rubber grommet will
secure the USB cable to ensure waterproofing.

Receiver
Hardware
Champion:
Sean Bullis

This block is the hardware that receives the GPS location of the rover from the
transmitter and is located on the base station. It uses an Adafruit RFM95
breakout LoRa module to receive LoRa packets from the transmitter and an
RP2040 microcontroller to store them in the RX code. The RP2040 will pick up
the data over SPI. The inputs to the system are 5V input from either a battery
boost circuit or 5V from USB power and the GPS data being received via LoRa.
The output is GPS data to the RX code via SPI.

Table 3.2.1 - Block Description Table

3.3. Interface Definitions
The following table includes a complete list of every interface in our system. Each

interface is given a name that indicates which blocks it is connected to. Each interface has
properties assigned to it that are used to prove if the system is operating nominally.

Interface Name Properties

otsd_trnsmttr_hrdwr_dcpwr ● Inominal: 75mA
● Ipeak: 500mA
● Vmax: 5.25V
● Vmin: 4.75V
● Vnominal: 5.0V

otsd_trnsmttr_hrdwr_rf ● Messages: NMEA GPS Sentences
● Other: 3.3V Logic
● Protocol: NMEA

otsd_trntbl-cntrllr_dcpwr ● Inominal: 1A
● Ipeak: 2A
● Vmax: 13V
● Vmin: 11V
● Vnominal: 12V

otsd_u_usrin ● Other: Manually defined angle is only sent when
user presses "send" button

● Type: Button Click
● Type: Text- Angle: 0.0-360.0

otsd_trckng_lgrthm_data ● Datarate: Rate Max: 1 update per second
● Messages: NMEA Sentences
● Protocol: USB

otsd_trncvr_nclsr_other ● Other: Battery Switch
● Other: Mounting
● Other: Battery LED
● Other:Weatherproofing

otsd_rcvr_hrdwr_dcpwr ● Inominal: 75mA
● Ipeak: 500mA
● Vmax: 5.25V
● Vmin: 4.75V
● Vnominal: 5V

tx_cd_trnsmttr_hrdwr_data ● Datarate: 12KHz
● Other: gps data
● Protocol: SPI

trnsmttr_hrdwr_rvr_gps_data ● Datarate: 9600 bps
● Messages: NMEA Sentences
● Protocol: UART

trnsmttr_hrdwr_rcvr_hrdwr_rf ● Datarate: Data Rate Min: 1 message per 5 seconds
● Datarate: Data Rate Max: 1 message per second
● Messages: GPS Latitude and Longitude data, time

data
● Protocol: LoRa

rvr_gps_tx_cd_data ● Datarate: 1 Message Per Second
● Messages: Longitude
● Messages: UTC Time
● Messages: Latitude

rx_cd_trckng_lgrthm_data ● Datarate: Rate Min: 1 message per 5 seconds
● Datarate: Rate Max: 1 message per second
● Messages: Latitude, Longitude, UTC Time
● Protocol: USB

trntbl_trntbl-cntrllr_comm ● Messages: Data: 16-bit data package
● Other: RS422 Logic High Vmin: 2V
● Protocol: 4 Wire SPI (data protocol)

trntbl-cntrllr_trntbl_acpwr ● Inominal: 0.4A (per stepper positive channel)
● Other: Imax: 1A
● Vmax: 14V
● Vnominal: 12V (per stepper positive channel)

trntbl-cntrllr_trntbl_dcpwr ● Inominal: 21mA
● Ipeak: 210mA
● Vmax: 5.5V
● Vmin: 4.5V
● Vnominal: 5V

trntbl-cntrllr_trntbl_comm ● Messages: Command: 16-bit data package
● Other: RS422 Logic High Vmin: 2V
● Protocol: 4 Wire SPI (data protocol)

u_otsd_usrout ● Type: Numbers - Base Station Coordinates
● Type: Numbers - Angle (in degrees)
● Type: Numbers - Rover Coordinates

u_trntbl-cntrllr_data ● Datarate: 1 message every button click
● Messages: Angle: Must be from 0.0 - 360.0

degrees
● Protocol: UART Serial (9600 Baud)

trckng_lgrthm_trntbl-cntrllr_data ● Datarate: Message Rate Max: 1 message every 1
second

● Datarate: Serial Transmission Rate: 9600 baud
● Datarate: Message Rate Min: 1 message every 5

seconds
● Messages: Angle: 0.0 - 360.0 degrees
● Protocol: UART Serial

trckng_lgrthm_u_data ● Datarate: Rate Min: Updates once every 5 seconds
● Datarate: Rate max: Updates once per second
● Messages: Angle: 0.0-360.0 degrees

rcvr_hrdwr_rx_cd_data ● Datarate: 12KHz from onboard clock
● Messages: GPS position and time data
● Protocol: SPI

Table 3.4.1 - Interface Parameters

3.4. References and File Links
3.4.1. References
3.4.2. File Links

3.5. Revision Table

Author Date Description

Kira Kopcho 3/12/23 Inserted black box diagram from
student portal

Kira Kopcho 3/12/23 Inserted generated list of
interfaces from the student
portal and added small
introductory sentence to section
3.3

Angel Huang 5/14/23 Formatting fixes

4. Block Validations
4.1. Tracking Algorithm

4.1.1. Description
The idea behind the tracking algorithm is to keep track of both the geographic position of

the main communications antenna for the rover and the position of the rover itself. These
positions will be used to orient the main communication antenna towards the rover by providing
an angle of rotation to the turntable module.

Both the rover and the antenna mount have GPS modules mounted on them. The
tracking algorithm takes latitude and longitude coordinates from both of these sources and then
computes the azimuth (forward bearing) based on them. Basically, azimuth is the horizontal
angle on a compass, with true north being 0 degrees and then the rest of the cardinal directions
being determined by moving clockwise around a circle. The calculation of this azimuth is
produced by feeding both the rover and base coordinates into a series of trigonometric
equations.

The resulting azimuth from the tracking algorithm is fed to the motor controllers on the
turntable module to rotate the antenna in the direction of the rover. Keeping with the engineering
requirements of the system, the azimuth will be bound between 0 and 360 degrees. This is to
ensure compatibility with the motor driver code on the turntable module. Additionally, the
tracking algorithm code itself will provide an updated azimuth at the slowest acceptable speed
of 1 update every 5 seconds. For verification purposes, the tracking algorithm will display time
stamps alongside the data it receives and each azimuth update it sends.

4.1.2. Design
The tracking algorithm itself is part of a larger tracking subsystem that consists of the

Transceiver Hardware Module, the Turntable Controller, and the User Interface on the ground
station. Originally, the GPS mounted on the antenna module that the tracking algorithm gathers
data from was going to be considered as a separate block. It was later absorbed into the
tracking algorithm itself since it is an off-the-shelf piece of hardware and works out of the box
with fairly little hardware or software overhead. Additionally the majority of verifiable properties it
has involve the tracking algorithm anyways, so it made more sense to simply encompass it into
the tracking algorithm block. A full overview of how the tracking algorithm is interconnected with
other systems is displayed in the diagram in Figure 2 below.

The tracking algorithm runs on an Intel NUC 11 mini PC using Ubuntu 20.04. The block
itself takes input from two sources, the GPS on the base station (otsd_trckng_lgrthm_data) and
the receiver (rx_cd_trckng_lgrthm_data). The GPS on the base station is the same module that
is on the rover: a GT-U7. This module is a prebuilt board that includes a u-blox Neo-6 GPS
receiver and an 15db antenna. The base GPS is connected to the NUC over USB, and the data
sent is parsed by the GPS daemon utility. The transciever module is also connected to NUC via
USB. The messages sent by the transciever will be decoded using the Pyserial library.

There are two outputs to the tracking algorithm, the UI output (trckng_lgrthm_u_data)
and the output to the turntable controller. The turntable controller

(trckng_lgrthm_trntbl-cntrllr_data) simply takes the angle returned by the tracking algorithm. This
data is sent using a USB to Serial interface. The UI itself runs on the same NUC the tracking
algorithm runs on. Separate code will handle the transport of the results of the tracking
algorithm (angle display, rover latitude/longitude, base latitude/longitude) to the UI display. All of
the inputs and outputs to the tracking algorithm are displayed in Figure 1 below.

Fig. 4.1.3.1 - Black Box Diagram for the Tracking Algorithm

Fig. 4.1.3.2: Full Tracking Subsystem Diagram

4.1.3. General Validation
There are three main parts of the tracking algorithm script. The first is the GPS daemon

(GPSd) client, which listens for NMEA 0183 packets from GPS modules over USB or serial [1].
There are many proprietary protocols for receiving GPS data including the UBX protocol that’s
proprietary to GPS receivers like the NEO-6 [2]. We choose to use NMEA 0183 however, due to
its wide use in industry and availability of libraries. The base GPS is connected to the NUC 11
via USB, due to the fact that the NUC does not have exposed serial ports. The client side code
is written in Python for both ease of use and to maintain compatibility with other libraries used in
the tracking algorithm [3]. The system has a requirement that the angle of rotation (or azimuth)
will be updated at least every 5 seconds. This means that all inputs to the tracking algorithm

must be processed in under 5 seconds. Using GPSd to process the data from the base GPS
helps satisfy this requirement because it has relatively low latency. The optimal line speed of the
GPS used is 9600 bits per second, which yields an update rate of about 0.5 seconds [4]. GPSd
itself polls the GPS for updates twice per second. This update rate is well within the 5 second
requirement.

The second part of the tracking algorithm is the functions for processing the data from
the transceiver. The transceiver takes GPS data received from the rover and then sends it to the
tracking algorithm code in the form of character streams. It is connected to the NUC via USB
and the information from it will be read using the PySerial library since it provides convenient
API for reading serial data off a USB port [5]. In order to use the data received from the rover
GPS in calculating bearing, we convert the character strings to floating point. The conversions
to floating point from characters onboard the NUC because it has a more robust floating point
processor than the RPI2040 on the transceiver module. Similar to the coordinates received from
the base GPS, the coordinates from the transceiver must be read by the tracking algorithm in
less than 5 seconds in order to meet the engineering requirements. To meet this requirement,
the tracking algorithm reads from the serial interface once per loop, which gives a rough update
rate of once per second (barring any hardware based communication issues).

The final part of the tracking algorithm is the math functions to find the bearing angle
from the received coordinates. A general equation for initial bearing or azimuth is used to
produce the angle to send to the antenna controller [6]. This angle is bound between 0 and 360
degrees to accommodate for a wide range of positions the rover could drive to. The precision of
the final angle is 1 decimal place. The azimuth finding function in the tracking algorithm is
hardcoded rather than relying on libraries such as GeoPy. GeoPy relies on geocoders such as
Google Maps, and while we used to have access to the Google Maps API for free, it no longer is
[7]. In order to validate the accuracy of the angle produced by the tracking algorithm, it is
compared to known accurate azimuth calculators. To keep the accuracy of the system within the
engineering requirements, the angle returned from the tracking algorithm is required to be within
+/- 5 degrees of the angle produced by the bearing calculator.

4.1.4. Interface Validation
The interfaces below aid in the validation that the system meets the engineering

requirements. The table lists what each interface is, how it relates to the block and the system
around it, and why the design meets the property of each interface. Each interface has values
that correspond to meeting certain engineering requirements- namely the engineering
requirements for system accuracy, system field of view, and system update rate. Each interface
has been designed to meet specifications of these particular requirements.

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

otsd_trckng_lgrthm_data: Input

Datarate: 1 update per
second

Our system has a requirement
that tracking is fast and
comprehensive, which means
nominally the antenna angle
should be updated every 5
seconds. In order to make these
updates every 5 seconds, the
coordinates from the base gps
need to be transmitted quicker
than the update rate.

The nominal update rate of most
GPS modules connected to
GPSd is about every half of a
second Assuming worst case
scenario latency wise, expecting
a message every second is
reasonable.

Messages: Raw NMEA
Data

The Neo-6 GPS chip on the
GT-U7 module outputs raw
NMEA packets in its default
configuration, which is what is
used in our system.

The tracking algorithm links into
the GPSd daemon, which listens
to the serial port the gps is
connected to. It collects the raw
NMEA data and then the GPSd
Python library used in the
tracking algorithm interprets this
raw data into a human readable
format.

Protocol: USB The GT-U7 GPS module can
communicate over either UART
or USB. USB is used to
communicate to the ground
station computer because it
does not have any exposed
serial ports.

The GT-U7 module provides a
micro usb 2.0 connector. In
addition, GPSd (the daemon
used to collect the raw NMEA
data from the base gps) listens
for incoming NMEA data on the
USB/Serial interfaces provided
by the Linux operating system

rx_cd_trckng_lgrthm_data : Input

Datarate: Rate Max: 1
message per second

Our system has a requirement
that tracking is fast and
comprehensive, which means
nominally the antenna angle

The code polls the transceiver
for data once per second.

should be updated every 5
seconds. In order to make these
updates every 5 seconds, the
coordinates from the rover gps
need to be fed to the tracking
algorithm in less than 5
seconds.

Datarate: Rate Min: 1
message per 5
seconds

Nominally the angle of the
antenna should be updated
every 5 seconds. However,
there is the possibility of latency
when sending coordinates from
the receiver. So worst case
scenario, the minimum update
rate should be within 5 seconds.

The tracking algorithm currently
polls the receiver module for
data once per loop which
equates to roughly once a
second.

Messages: Latitude,
Longitude, UTC Time

The tracking algorithm operates
by taking the latitude/longitude
of the base gps and the
latitude/longitude of the rover
gps to calculate a bearing angle.
UTC time is included to check
the speed of updates.

The tracking algorithm uses
Pyserial to read incoming data
from the receiver, which has the
ability to read data strings. The
received data is then stored in a
string that can be parsed to
determine each individual value
needed for other program
functions.

Protocol: USB USB is used because the NUC
does not have exposed serial
ports.

Pyserial, the python library
chosen to read the data send by
the receiver supports reading
from both USB and serial ports.

trckng_lgrthm_trntbl-cntrllr_data: Output

Datarate: Serial
Transmission Rate:
9600 baud

9600 is a standard baud rate
when working with UART

The arduino microcontroller on
the antenna controller is
compatible with 9600 baud serial
UART transmissions

Datarate: Message
Rate Min: 1 message
every 5 seconds

5 second intervals are chosen
for updates due to potential
latency between modules in the
tracking sub-system

Assuming minimum latency over
UART at 9600 baud, we should
reasonably be able to send a
message once every five
seconds

Datarate: Message
Rate Max: 1 message
every 1 second

An update every second is the
best case scenario, but due to
hardware limitations this might
not always be possible

Assuming minimum hardware
latency between all parts of the
tracking system, a message rate
of once per second should be
achievable.

Messages: Angle: Must
be from 0.0 - 360.0
degrees

We do not want to drive the
stepper motors at negative
angles, so going from 0-360
degrees will ensure we catch
wrap-around angles.

The code will have validation for
whether the output angle is
between 0-360 degrees.

Protocol: UART Serial The arduino on the turntable
controller is expecting angles
sent via UART serial.

To achieve the sending of serial
data, a FTDI USB/Serial
converter is plugged into the
NUC. Pyserial is then used the
send serial data with UART
specifications (9600 baud, 8 bits,
1 stop bit) over the USB port the
FTDI cable is plugged into.

trckng_lgrthm_u_data : Output

Datarate: Rate Max-
updates once per
second

We want the angle to update on
the UI synchronously with the
update sent to the antenna
controller so users can know
what position the antenna is
currently rotated to at all times.

Since we use a python based
module for UI directly on the
NUC as well, the latency is
negligible between sent data
and updates in the UI

Datarate: Rate Min:
updates once every five
seconds

We want the angle to update on
the UI synchronously with the
update sent to the antenna
controller so users can know
what position the antenna is
currently rotated to at all times.

Since the code is running
directly on the groundstation,
latency between the code and
the UI should be negligible.
However in case there is latency
on the hardware end, at
minimum the angle should be
able to be updated every 5
seconds.

Datarate: Rate Max:
updates once per
second

We want the angle to update on
the UI synchronously with the
update sent to the antenna
controller so users can know
what position the antenna is
currently rotated to at all times.

The function to produce the
bearing angle is called once per
loop, which if the program is
running nominally means an
update of once per second.

Messages: Angle 0-360
degrees

Since we’re binding the angle
from 0-360 for sending to the
antenna controller, in order to
show accurate angles on the UI
it also has to be 0-360 degrees.

The code will not send an angle
that is not between 0-360

Table 4.1.4.1 - Tracking Algorithm Interface Validation

4.1.5. Verification Process
The verification plan listed below details basic steps to ensure functionality of the

tracking algorithm before it is tested with other elements of the larger system. Due to not having
access to the transceiver module while writing the initial code, an Adafruit feather is used in
place of the transceiver module to send “rover coordinates” to the tracking algorithm. How this is
achieved is shown in the code links in the file references section below. Edits to the code will
likely have to be made when the entire system integration process begins, but for now the
feather provides an adequate simulation of what interfacing with the transceiver module will be
like. Timing will be verified based on calculating the difference between the times that each
angle is reported. This ensures greater accuracy than using a stop watch and watching the
terminal. The verification plan below aims to be simple in its implementation, so even users
unfamiliar with the tracking algorithm can verify that is running correctly.

1. Start the GPS daemon on the NUC (if not already set to start on powerup) and wait for
the base GPS to get a fix (nominal 1 second)

2. Ensure that the transceiver module is plugged into the NUC and started. If the
transceiver is not present at block check off use a similar microcontroller to provide false
coordinates over serial to the NUC.

3. Start the tracking algorithm code
4. Let the tracking algorithm run for 1-2 minutes to gather sufficient datapoints, then ctrl-c to

stop the process.
5. Plug the reported rover latitude and longitude as well as the base latitude and longitude

into a known azimuth calculator to produce the known accurate bearing angle
6. Convert the angle produced by the known azimuth calculator to an angle between 0-360

to compare with the output of the tracking algorithm
7. Verify that the produced angle is within 5 degrees of the angle reported the calculator
8. Record the times reported when the rover coordinates are printed and when the base

coordinates are printed.
9. Record the time each angle is printed.

10. Take the difference between the times each angle is printed to determine how fast the
tracking algorithm is operating. The goal is 1 update every 5 seconds at maximum.

11. Take the difference between each time each set of coordinates is reported. The goal is
that both the rover and base coordinates should update every 5 seconds max, but
ideally in less than 5 seconds.

4.1.6. References and Files Links
4.1.6.1. References

[1] E. Raymond, “GPSD” in The Architecture of Open Source Applications Volume II: Structure,
Scale and a Few More Fearless Hacks, A. Brown and G. Wilson. [Online] Available:
https://www.aosabook.org/en/gpsd.html [Accessed: Jan. 20, 2023]
[2] u-Blox, “NEO-6 Data Sheet” Aug. 2009 [Revised Dec. 5, 2011] [Online] Available:
https://content.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_%28GPS.
G6-HW-09005%29.pdf [Accessed Jan. 20, 2023]
[3] G.E. Miller, “gpsd Client Example Code”, gpsd.io, July 24, 2022. [Online] Available:
https://gpsd.io/gpsd-client-example-code.html [Accessed Jan. 20, 2023]
[4] E.S Raymond, “Where’s the Latency? Performance analysis of GPSes,” Version 2.4, Jan. 20,
2020 [Online] Available: https://gpsd.io/performance/performance.html [Accessed Feb. 11, 2023]
[5] C. Lechti, “pySerial API”, pyserial.readthedocs.io, 2021. [Online] Available:
https://pyserial.readthedocs.io/en/latest/pyserial_api.html [Accessed Jan. 20, 2023]
[6] C. Veness “Calculate distance, bearing and more between Latitude/Longitude points”,
moveable-type.co.uk Feb. 2019 [Online] Available:
https://www.movable-type.co.uk/scripts/latlong.html [Accessed Jan. 20, 2023]
[7] “Geocoders”, geopy.readthedocs.io [Online] Available:
https://geopy.readthedocs.io/en/stable/#module-geopy.geocoders [Accessed Jan. 20, 2023]

4.1.6.2. File Links
1) RX Module PySerial Test Code
2) Tracking Algorithm Code

4.1.7. Revision Table
Author Date Description

Kira Kopcho 1/20/23 Created Document

Kira Kopcho 1/20/23 Wrote Description and Design
sections

Kira Kopcho 1/20/23 Added general verification,
interface verification, and
verification plan information

Kira Kopcho 2/03/23 Revised block description to
include less technical details

Kira Kopcho 2/03/23 Minor revisions to interfaces to

https://www.aosabook.org/en/gpsd.html
https://content.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_%28GPS.G6-HW-09005%29.pdf
https://content.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_%28GPS.G6-HW-09005%29.pdf
https://gpsd.io/gpsd-client-example-code.html
https://gpsd.io/performance/performance.html
https://pyserial.readthedocs.io/en/latest/pyserial_api.html
https://www.movable-type.co.uk/scripts/latlong.html
https://geopy.readthedocs.io/en/stable/#module-geopy.geocoders
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/blob/main/rover_gps/serial_test.py
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/blob/main/rover_gps/tracking_algorithm.py

match what is currently on the
portal

Kira Kopcho 2/03/23 Added links to the GitHub
repository where the latest
version of the Tracking
Algorithm code is stored

Kira Kopcho 2/03/23 Minor revisions to the the
description to explicitly reference
the applicable engineering
requirements for this block

Kira Kopcho 2/11/23 Updated Figure 2 in the Design
section to be more legible

Kira Kopcho 2/11/23 Minor revisions to the design
section paragraphs to reflect
interface/design changes made
on the student portal

Kira Kopcho 2/11/23 Revised the general verification
section to provide more direct
references to the engineering
requirements. Also reordered
the in text citation numbers so
they’re not out of order

Kira Kopcho 2/11/23 Added introductory paragraph to
verification plan and added
additional steps to better prove
that each requirement is met

Kira Kopcho 2/11/23 Replaced the Black Box
Diagram image with an updated
version that shows the latest
changes to the input/output
interfaces

Kira Kopcho 2/11/23 Updated the interface table to
match the interfaces that are in
the student portal

Kira Kopcho 2/13/23 Merged separate verification
document into full project
document

Kira Kopcho 5/14/23 Minor grammar/spelling
revisions and formatting
changes

4.2. Rover GPS
4.2.1. Description

The Rover GPS Block is a library of code that is responsible for sampling UART data
received on one of the RX UART pins of the RP2040 Microcontroller chip, parsing said data,
storing said data in the corresponding member variable of the GPS data struct, and then
passing this data into the main transceiver code (TX Code) when called to do so. The data fed
to the RP2040 Microcontroller chip from the GPS module via the UART connection is in the form
of NMEA sentences which contain values for the latitude and longitude of the module, the time
of the reading, the number of satellites the module is receiving information from, and the
altitude, as well as several other received values that are not needed for our purposes. The
Rover GPS code library contains a parsing function that first looks for the specific NMEA
sentence that begins with “$GPGGA.” The parsing function then goes value by value, saving
only the latitude, longitude, and time of receipt to the corresponding members of the NMEA data
struct. The main transceiver code, then calls on the members of this struct, reading out the
contained data to be transmitted to the next transceiver via the LoRa modem on the transceiver
hardware.

The GPS module on the other side of the UART connection, is the Gouuu Tech GT-U7
GPS module. This GPS module was sourced from Amazon and selected for its ease of use as
well as the ability to interface with it in a number of ways that are beneficial to our project. As
well as being directly mounted to the transmitter hardware, a separate Gouuu Tech GT-U7 GPS
module is connected to the rover base station over a USB connection.

4.2.2. Design

Fig. 4.2.2.1 - Rover GPS Block

The code below first defines the UART port utilized to communicate with the GPS
module, the baud rate, LED pin, the UART TX and RX pins, the NMEA sentence buffer size,
and the specific NMEA sentence we are interested in parsing. The NMEA_data struct is then
defined with the latitude and longitude members being doubles and each of the individual time

members being integers. Following these definitions is the parsing function, which is defined as
an NMEA_data structure. This function takes in a pointer to an NMEA sentence and returns an
NMEA data struct. The parsing function checks the beginning of the sentence that was passed
into it to confirm that it matches the NMEA_SENTENCE_GPGGA definition. If there is not a
match, no parsing is done and the function returns an NMEA_data structs with zeros filled in for
all members. If there is a match between the passed in NMEA sentence and the defined
sentence type, the parsing function creates a pointing character which will be used to point to
each character of the passed in sentence as we parse it. This pointer is moved to the first
comma which precedes the time information in the $GPGGA NMEA sentence. This time
information is read into the three time members of the NMEA_data structure; the first two
integers are the hour, the next two are the minutes, and the last two are the seconds at the time
the location data within this sentence was received by the GPS module. In the $GPGGA NMEA
sentence, seconds are delivered as a double, but the GPS module we are using does not
record the second data past the decimal point; therefore, this function only reads the seconds
as a two digit integer and does not record the zeros displayed after the decimal point in this
sentence. After reading the time data, the pointer is moved to one character after the comma
succeeding the time data and preceding the latitude data. The first two values of the latitude
data are saved in a temporary variable; the remainder of the values are read into a
latitude_minutes variable, divided by 60 to obtain the needed value and then added to the
latitude variable with is then saved to latitude struct member. After reading the latitude data, the
function moves onto the N/W indication field in the NMEA sentence. If in the southern latitude, a
minus sign is added to the front of the latitude struct member. The function does the same thing
for the longitude and the E/W indication fields as it did for the two previous section. The function
concludes by returning the NMEA_data struct.

The main section of the code first sets all of the corresponding I/O pins using the
previously defined values. A while loop is then used to continuously run the reading, saving, and
writing of GPS data. The NMEA sentences from the GPS module are read and the desired
sentence is saved into the NMEA data structure utilizing the parsing function. The data is then
read out in the following order: latitude,longitude,time(UTC). The LED is turned on and then off
to indicate the returning of data and then the NMEA data is cleared from memory.

#include <stdio.h>
#include <string.h>
#include "pico/stdlib.h"
#include "hardware/uart.h"
#include "pico/time.h"
#include "pico/multicore.h"

// UART definitions
#define UART_ID uart0
#define BAUD_RATE 9600

// Configure LED pin

#define LED_PIN 25

// Pins GP16 and GP17 are being used for testing purposes with a
pico;
// pins 0(TX) and 1(RX) will be used when this code is uploaded to
the
// transceiver.
#define UART_TX_PIN 16
#define UART_RX_PIN 17

// Definitions used by the parse_nmea_sentence function
#define NMEA_BUF_SIZE 100
#define NMEA_SENTENCE_GPGGA "$GPGGA"

// Define the NMEA_data struct
typedef struct {

double latitude;
double longitude;
int hour;
int minute;
int second;

} NMEA_data;

// NMEA_data parsing function which takes in an NMEA sentence and
fills in the
// longitude, latitude, and time members of the NMEA_data struct.
NMEA_data parse_nmea_sentence(const char *sentence) {

NMEA_data data = {0};

if (strstr(sentence, NMEA_SENTENCE_GPGGA) == sentence) {
char *p = (char *)sentence;

// move pointer to time
p = strchr(p, ',') + 1;

// parse time
int hour, minute, second;
sscanf(p, "%2d%2d%2d", &hour, &minute, &second);
data.hour = hour;
data.minute = minute;
data.second = second;

// move pointer to latitude
p = strchr(p, ',') + 1;

// parse latitude
double latitude, latitude_minutes;
sscanf(p, "%2lf%lf", &latitude, &latitude_minutes);
data.latitude = latitude + latitude_minutes / 60.0;

// move pointer to N/S indicator
p = strchr(p, ',') + 1;

// check N/S indicator and adjust latitude
if (*p == 'S') {

data.latitude = -data.latitude;
}

// move pointer to longitude
p = strchr(p, ',') + 1;

// parse longitude
double longitude, longitude_minutes;
sscanf(p, "%3lf%lf", &longitude, &longitude_minutes);
data.longitude = longitude + longitude_minutes / 60.0;

// move pointer to E/W indicator
p = strchr(p, ',') + 1;

// check E/W indicator and adjust longitude
if (*p == 'W') {

data.longitude = -data.longitude;
}

}

return data;
}

4.2.3. General Validation
The code that will be uploaded to the RP2040 microcontroller chip will be written in the C

programming language for purposes of familiarity amongst the relevant members of the group
and for the best utilization of the limited resources available. The GPS module used in
conjunction with this code is the Gouuu Tech GT-U7 GPS module. This particular module
outputs 7 different NMEA sentences, one of which contains all of the desired information; the
“$GPGGA” sentence. Parsing this sentence is on this first transceiver’s hardware saves
resources on other sets of hardware in our project.

4.2.4. Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each
property?

trnscvr_hrdwr_rvr_gps_data : Input

Datarate: 9600 bps This is the standard operating
baud rate of the Gouuu Tech
GT-U7 GPS module.

When utilizing the serial
monitor to view output of the
code, output is only visible in
the serial monitor when it is
set to 9600 baud. An
oscilloscope has been used
to view this baud rate and will
be used again if need to
show definitively that
transmissions are at this rate.

Messages: NMEA Sentences Without explicit configuration,
the GPS module sends 7
sentences formatted in the
standardized NMEA format.

My code reads the sentence
identifier at the beginning of
each sentence, determines
the required sentence, and
parses this sentence.

Protocol: UART Although the Gouuu Tech
GT-U7 GPS module has a
simple USB plug-and-play
interface, the UART TX and
RX pins are utilized and
connected to the transceiver
hardware.

The appropriate UART
parameters are defined and
enabled to allow for UART
communications.

rvr_gps_tx_cd_data : Output

Datarate: 1 Message Per
Second

One message per second
was determined to provide
ample time for the tracking of
the rover via the rotating
antenna.

The functions and code
included have a delay of 500
milliseconds with an added
500 milliseconds added with
the blinking of the LED,
resulting in the transmission
of GPS data once ever
second. This is visible with
the printout of the time with
each output in the serial
monitor used.

Messages:
Longitude,Latitude,UTC Time

This simple string of
characters representing the
latitude, longitude, and UTC

The code returns these struct
members. The latitude,
longitude, and UTC time data

time is utilized due to the
ease of handling by the
tracking algorithm on the
base station

have been viewed as outputs
in the serial monitor.

4.2.5. Verification Process
1. Connect the TX and ground pins of the Gouuu Tech GT-U7 GPS module up to an

oscilloscope to demonstrate the baud rate of the signal.
2. Use the serial monitor to display the raw NMEA sentences from the GPS module.
3. Use the serial monitor to display the latitude, longitude, and UTC time data after the

NMEA sentences have been parsed. The time displayed will show one sentence being
transmitted at least once per second

4. Plug the new latitude and longitude sentence into google maps to show the GPS
coordinates are accurate and live.

4.2.5.1. References
[1] Semtech, “SX1276/77/78/79 Datasheet,” [Online] Available:
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF
_Fkpgp5kzjiNyiAbqcpqh9qSjE [Accessed: 11-Feb-2023].
[2] Raspberry Pi, “RP2040 Datasheet - A Microcontroller by Raspberry Pi” [Online] Available:
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf [Accessed: 11-Feb-2023].

4.2.5.2. Files Links
1) GPS Test Code
2) GPS Code Integrated into the Transmitter Code

4.2.6. Revision Table

Author Date Description

Austin Grubowski 01/12/23 Created Block Validation
document.

Austin Grubowski 01/20/23 Updated interfaces, filled in all
remaining sections.

Austin Grubowski 02/11/23 Changed what block is being
validated. Filled in all sections.

Austin Grubowski 03/12/23 Corrected references. Clarified
verification plan.

Kira Kopcho 5/14/23
Fix revision table to match the
style of the rest of the document

https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://drive.google.com/file/d/1V6JCfHaPI86UXx0uz5sLqmQ9VrP5L_-o/view?usp=drivesdk
https://drive.google.com/file/d/1rF8ZZS-Qw9_9L2kERjRCqD2jdvwiPEKP/view?usp=drivesdk

4.3. Transmitter Hardware
4.3.1. Description

This block is the hardware that receives the modulated LoRa packet from the transmitter
on the rover. The receiver will transfer GPS location data received from the LoRa modem and
send that data to the receiver code block via the RP2040 microcontroller via SPI. The system
uses the same hardware design to receive the transmitted messages as it is used to send
messages.

The RP2040 is driven by a 12MHz clock and uses 128Mb flash storage to store its code.
The boot mode is determined using a jumper on the PCB controlling either code upload or code
execution depending on the state when powered on.

The inputs to the system are 5V input from either a battery boost circuit or 5V from USB
power, and input from the transmitter code block via radio frequency. The output is GPS data to
the receiver code block over SPI.

4.3.2. Design
This block takes three inputs and produces two outputs. The input

otsd_trnsmttr_hrdwr_dcpwr is the power coming from the USB or battery to the transmitter. The
transmitter has a built-in power switching and power regulating circuit that requires a 5V input
with the capability to draw up to 500mA. The otsd_trnsmttr_hrdwr_rf input is data being
transferred from outside the system to the on-board GPS submodule. This data is in the form of
NMEA sentences and contains GPS data. The tx_cd_trnscvr_hrdwr_data describes the data
that is transferred from the code block on the transmitter’s on-board processor onto the
hardware to be sent via LoRa to the receiver.

The output trnsmttr_hrdwr_rvr_gps_data is the data transfer from the transceiver
hardware’s GPS module to the GPS code block on the transmitter’s microcontroller. The output
trnsmttr_hrdwr_rcvr_hrdwr_rf is the transfer of data from the LoRa sub-module on the PCB
through radio frequency to the receiver’s LoRa sub-module. Figure 1 shows the black box
diagram for the block.

Fig. 4.3.2.1 - Black Box for Transmitter

Figure 2 shows the schematic of the sub-block for the microcontroller. The
microcontroller has connections to the GPS module where it receives GPS data from satellite,
the LoRa submodule where it sends GPS data to transmit and where it receives GPS data from
the transmitter, and the flash memory and power sub-blocks.

Fig. 4.3.2.2 - RP2040 is shown with connections to the GPS module and LoRa submodule, flash
memory submodule, and the clock.

Figure 3 shows the power distribution circuit for the block. Battery connection for a 3.7v
LiPo battery goes into a 3.7-5V boost converter to provide 5V supply. The USB and boosted
battery power go into a power switcher which selects which power source based on the logic on
pins D0 and D1. Jumpers are provided to control the default power source.

Fig. 4.3.2.3 - The power distribution circuit for the block.

A Winbond W25Q128JVS is used for flash memory which can hold up to 128Mb of data.
This is connected via the QSPI ports to the RP2040. The jumper J1 is a connection to control
the boot mode upon start-up. If USB_BOOT is held low during power on the device will initialize
as USB mass storage, while if the USB_BOOT is held high on power up which is the default
case, the device will power on to run code. This is shown in Figure 4.

Fig. 4.3.2.4 - Flash storage circuit with USB_BOOT switch to enable code execution mode or
code upload.

External connections to sub-modules are also provided. The device does not have a
USB port but rather break-out pins for the individual data and power lines for a USB cable. In
addition, the GPS module and LoRa modem are connected through these external connections.
The external connections are shown in Figure 5.

Fig. 4.3.2.5 - Pin connections for external sub-modules and USB

4.3.3. General Validation
This hardware design is based on the minimum design from Raspberry’s RP2040

hardware design guide. The chip requires 3.3V input voltage and uses 3.3V logic on its input
and output pins [1]. The chip is clocked by a ABLS-12.000MHZ-B4-T 12MHz crystal oscillator,
and utilizesW25Q128JVSIM 128Mb flash storage. Both parts are recommended from the

hardware example. The RP2040 has SPI and UART channels and both will be utilized in this
design to transfer data to and from the microcontroller.

The 3.3V required for the RP2040 and other peripherals is generated using the
AZ1117IH-3.3TRG1, a 3.3V voltage regulator from Diodes Incorporated. The voltage regulator
has a 1.4V dropout voltage while pulling 1A. This means that the voltage supplied to the voltage
regulator must be at least 1.4V higher than its output to generate a stable output voltage at that
current. The 5V USB power supplied to the voltage regulator will be sufficient to satisfy this
requirement [2].

In the case of USB failure, a battery connection which can support a 3.7V LiPo battery or
three AA batteries is provided. The battery is boosted to a 5V output via TPS61322. The battery
is enabled by a switch and power output is controlled by a TPS2110APWR power multiplexer.
The multiplexer is configured such that USB power drives the circuit when it is present, however
when there is no USB power and the battery switch is enabled the circuit will be driven by the
battery. The state of the logic pins D0 and D1 are 1 and 0 by default which selects the output as
IN1. D0 is connected to USB, and when USB goes to 0 the D0 and D1 signals will both be 0
which selects for IN2. This is shown by the datasheet for the power multiplexer on page 7 [3].

The wireless transmitting and receiving of the LoRa packets is handled using an Adafruit
RFM95 module. This is connected using pins and pads to bind the module to the board. The
module takes 3.3V input and will draw an absolute maximum current of 140mA while
transmitting [4]. This module communicates with the RP2040 over the SPI interface with a data
transfer rate of 12KHz.

Pins and pads for the NEO-7 based GPS module bind the module to the board. This
module takes 3.6V to 5V input and uses 3.3V for its logic level. This module communicates with
the RP2040 over the UART interface. GPS data will be retrieved from the GPS module via
UART transferring at 9600 bps [5].

4.3.4. Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block

above meet or exceed each
property?

otsd_trnsmttr_hrdwr_dcpwr

Inominal= 75mA This value is chosen based
on the sum of the typical
current values for each of
the heavy lifting
components on the board;
the RP2040, the LoRa
modem, and the GPS
module.

The RP2040 in active mode
will pull about 20mA on its
own, and up to 50mA
driving all its GPIO pins [1].
The LoRa modem typically
draws 134mA during
transmission and the GPS
module typically draws
32mA during acquisition
[4][5]. The memory module
draws 25mA during
reads/writes. The power
switch pulls 55uA typical
during power delivery [2].
The boost converter draws
6.5uA while operating. The
transmitter will transmit
periodically, and read/writes
will not be frequent so the
RP2040 and GPS module
will be the main power
sources giving
approximately 55mA.

Ipeak = 500mA This value was chosen with
the absolute maximum
current ratings of each of
the components in the block
in mind. During a heavy
load test for the RP2040
running video drives, audio
drivers and SD card access
(popcorn test) the uC draws
91mA. The LoRa modem
pulls 140mA maximum
during transmission. The
GPS module pulls 40mA
maximum. The memory
module pulls 25mA during
read/write. The power
switch pulls 90uA max
when delivering power. The

Each of the values for
absolute maximum current
draws come from the data
sheets of the individual
components. Summing
them all and rounding up
with conservative estimates
for max values will provide
enough for each component
individually and then some.

The linear voltage regulator
is rated to pull 1A of current
with a drop off voltage of
1.4V above the output
voltage. The power switch
is rated to deliver up to 1A
as well. The battery boost

boost converter pulls 10uA
max while operating. This
sums to 297mA but a
conservative estimate of
200mA of headroom is
provided to ensure power
delivery is applied.

IC is rated to deliver up to
1.8A which are well above
the required nominal
current.

Vmax = 5.25 This value was chosen
because it is the maximum
possible input from the USB
source or battery source.

This will be met because
the highest output from the
battery boost converter is
5.15V according to the
TPS61322 datasheet and
the highest output from
USB is 5.25V according to
standard USB specs.

Vmin = 4.75 This value was chosen
because it is the lowest
possible input from the USB
or battery source.

This will be met because
the lowest output from the
battery boost converter is
4.85V according to the
TPS61322 datasheet and
the lowest output from USB
is 4.75V according to
standard USB specs.

Vnominal= 5 This is the nominal input
from battery or USB.

This will be met because
the typical voltage output of
both the battery boost
converter and USB is 5V.

otsd_trnsmttr_hrdwr_rf

Other = 3.3V Logic This is chosen because the
power for the RP2040 is
3.3V and operates on 3.3V
logic.

This will work because the
GPS module outputs a 3.3V
logic signal and is
compatible with the
RP2040.

Protocol = NMEA This was chosen because it
is out of our control and is
the protocol used by the
GPS submodule to retrieve
satellite data.

This is the format of the
data coming from the
satellite and is out of our
control.

Messages = NMEA
Sentences

This is what the GPS
submodule will provide. It is
essentially controlled by the
GPS submodule.

The GPS submodule
controls this based on what
the satellite sends and is a
design constraint.

trnsmttr_hrdwr_rvr_gps_data

Data rate = 9600 baud rate This is the default value for
UART.

This works because it is the
default baud rate for UART,
and this interface uses UART.
The RP2040 and the GPS
module both support UART
[1][5].

Messages = NMEA
Sentences

This is what the GPS
submodule will output. It is
controlled by the GPS
submodule.

This will work because it is
what is sent by satellite to the
GPS module. There is no
control over the data until we
receive it.

Protocol = UART This was chosen because
the RP2040 and GPS
module support UART and it
is a simple interface.

This will work because there
are UART libraries for
managing data transfers for
the RP2040 in the C/C++
SDK and both modules
support UART.

trnsmttr_hrdwr_rcvr_hrdwr_data

Data rate Min: 1 message per
5 seconds

This value was chosen
because it is easily
quantifiable and a reasonable
update frequency for
changing the position of the
tracking antenna

This will work because the
GPS module gets a position
fix quicker than once per
second and software can be
used to slow the speed down
beyond that which can be
verified either using time data
or LED blinking frequency.

Data rate Max: 1 message
per 1 second

This value was chosen
because it is easily
quantifiable and a reasonable
update frequency for
changing the position of the
tracking antenna

This will work because the
GPS module gets a position
fix quicker than once per
second and software can be
used to slow the speed down
beyond that which can be
verified either using time data
or LED blinking frequency.

Messages = GPS Lat/Long
and time data

This was chosen because
the GPS module will transmit
Lat/Long and time data.

This will work because the
data will be formatted as C
strings and can be
transmitted as bytes over the
SPI interface.

Protocol = LoRa This was chosen because
the RP2040 and LoRa
module support SPI and it is
a simple interface.

This will work because there
are SPI libraries for
managing data transfers for
the RP2040 has libraries in
the C/C++ SDK and both
modules support SPI.

tx_cd_trnsmttr_hrdwr_data

Data rate = 12Khz This value was chosen
because the clock that is
driving the RP2040
oscillates at 12KHz. This

This will work because SPI
uses the SCLK to drive the
data transfer so since the
clock driving the RP2040

will be the SCLK for the SPI
protocol and will dictate how
quickly data can be picked
up.

will be the same clock
SCLK is using it will work.

Messages = GPS Lat/Long
and time data

This was chosen because
the GPS module will
transmit Lat/Long and time
data. The data will come
through the LoRa module
and be pushed into the
MISO port.

This will work because both
the LoRa module and the
RP2040 support SPI and
the LoRa module can be a
SPI Slave while the
RP2040 will be the SPI
Master and will use the
RP2040 SCLK to clock the
data transfer [1][4].

Protocol = SPI This is chosen because it is
the easiest way to connect
to the ground station. The
RP2040 has libraries in the
C/C++ SDK to allow for
communication through its
USB port.

Libraries exist to allow the
RP2040 to transmit data
across USB. The board will
have a USB connection.

4.3.5. Verification Process

otsd_trnsmttr_hrdwr_dcpwr

To show this interface definition is met the following tests will be undertaken,

1. Connect the VBUS pin of a RP2040 based microcontroller to a power supply.
2. Set the power supply input voltage to 4.75V.
3. During normal operation ensure that the current stays at around 75mA and does not

exceed 500mA and that the device operates properly for 30 seconds.
4. Set the voltage to 5.25V and ensure that the current stays at around 75mA and does not

exceed 500mA and that the device operates properly for 30 seconds.

trnsmttr_hrdwr_rvr_gps_code

To show this interface definition is met the following tests will be undertaken,

1. Connect an oscilloscope to the UART data line connecting the GPS module and the
RP2040.

2. Measure the shortest time difference between bit changes over a data exchange period.
The inverse of that time will be the frequency in bits per second.

3. Connect the microcontroller via USB to a computer and run PuTTY.
4. Open a connection to the port that the transceiver is connected to on PuTTY.
5. Print the contents of the GPS message to USB via stdout and observe the message

contents in the terminal to ensure proper output.

tx_cd_trnsmttr_hrdwr_data

To show this interface definition is met the following tests will be undertaken,

1. Connect an oscilloscope to the SCLK line in the SPI interface and measure the
frequency of the clock. The clock should be oscillating at 12MHz. The rate at which data
gets transferred across the SPI interface is determined by the clock speed.

2. Connect the microcontroller via USB to a computer and run PuTTY.
3. Open a connection to the port that the transceiver is connected to on PuTTY.
4. Print the contents of the MISO message to USB via stdout and observe the message

contents in the terminal.

trnsmttr_hrdwr_rcvr_hrdwr_rf

To show this interface definition is met the following tests will be undertaken,

1. Connect the receiver to the PuTTY via USB and print out the contents of what is being
received from the LoRa packets.

2. View the timestamps of each message and when it is sent and ensure that the data rate
falls within the proper boundaries.

3. View the contents of each message and ensure that the data is GPS with latitude and
longitude information as well as time.

otsd_trnsmttr_hrdwr_rf

To show this interface definition is met the following tests will be undertaken,

1. Provide USB power to the GPS submodule.
2. Connect the IPEX Active Antenna.
3. Use PuTTY to monitor the communications over the COM port the GPS module is

plugged into. This will show that the IPEX antenna is compatible and that the data is
structured in NMEA sentences using the NMEA protocol.

4.3.6. References and Files Links
4.3.6.1. References

[1] “Raspberry Pi Documentation,” RP2040, 30-Nov-2022. [Online]. Available:
https://www.raspberrypi.com/documentation/microcontrollers/rp2040.html. [Accessed:
20-Jan-2023].
[2] “Voltage Regulators, 1.0 A Low-Dropout Positive, Fixed and Adjustable,” ON Semiconductor,
Jan-2020. [Online]. Available: https://www.onsemi.com/pdf/datasheet/ncp1117lp-d.pdf.
[Accessed: 20-Jan-2023].
[3] “Autoswitching Power Mux,” Texas Instruments, Mar-2010. [Online]. Available:
https://www.ti.com/lit/ds/symlink/tps2111a.pdf. [Accessed: 20-Jan-2023].
[4] “915MHz LoRa Transceiver Module,” www.hoperf.com, 2018. [Online]. Available:
https://cdn.sparkfun.com/assets/1/5/d/6/6/RFM95CW_Specification_EN_V1.0.pdf. [Accessed:
20-Jan-2023].
[5] “GT-U7 GPS Modules.” [Online]. Available:
https://images-na.ssl-images-amazon.com/images/I/91tuvtrO2jL.pdf. [Accessed: 21-Jan-2023].

4.3.6.2. Files Links
1) Transmitter Hardware Master Block Diagram: https://ibb.co/0c2jTL5
2) Transmitter Hardware KiCad Schematics/PCB Design

4.3.7. Revision Table

Author Date Description

Sean Bullis 1/20/23 Section creation

Sean Bullis 2/9/23
Added details on organization of
how the block works and
described the interfaces more
thoroughly

Sean Bullis 2/9/23
Removed the large schematic
and broke it down into smaller
schematics of the block for
clarity. Added explanations for
each subcircuit.

Sean Bullis 2/9/23
Revised section 3 and 4 to
match updates to circuit

https://ibb.co/0c2jTL5
https://github.com/bulliss93/Rover_RDF_Capstone/tree/main/Transceiver%20KiCad%20Project

Sean Bullis 2/11/23
Updated interfaces to match
current flow for interfaces.

Sean Bullis 2/11/23
Revised section 2, 4, and 5 to
match new block organization,
added otsd_trnscvr_hrdwr_rf
and
trnscvr_hrdwr_rvr_gps_code
and removed
trnscvr_hrdwr_tx_cd interface.

Sean Bullis 2/11/23
Split references section into a
reference and a file link and
uploaded the master block
diagram to the file link section

Sean Bullis 3/13/23
Cut content about receiver

Sean Bullis 3/13/23
Changed transceiver to
transmitter and added section
about the connections to
sub-modules and Figure 5

Sean Bullis 3/13/23
Changed linear voltage regulator
from NCP1117 to AZ1117

Sean Bullis 3/13/23
Change transceiver to
transmitter and cut receiver
interfaces

Sean Bullis 3/13/23
Updated section 5 to match new
interfaces and cut receiver
interfaces

Sean Bullis 5/1/23
Updated the battery schematic
and added borders around
images

Kira Kopcho 5/14/23
Fix revision table to match the
style of the rest of the document

4.4. Receiver Hardware
4.4.1. Description

This block is the hardware that receives the modulated LoRa packet from the transmitter
on the rover. The receiver will transfer GPS location data received from the LoRa modem and
send that data to the receiver code block via the RP2040 microcontroller via SPI. The system
uses the same hardware design to receive the transmitted messages as it is uses to send
messages.

The RP2040 is driven by a 12MHz clock and uses 128Mb flash storage to store its code.
The boot mode is determined using a jumper on the PCB controlling either code upload or code
execution depending on the state when powered on.

The inputs to the system are 5V input from either a battery boost circuit or 5V from USB
power, and input from the transmitter code block via radio frequency. The output is GPS data to
the receiver code block over SPI.

4.4.2. Design
This block takes two inputs and produces one output. The input otsd_rcvr_hrdwr_dcpwr

is the power coming from the USB or battery to the receiver. The transmitter has a built-in power
switching and power regulating circuit that requires a 5V input with the capability to draw up to
500mA. The input trnsmttr_hrdwr_rcvr_hrdwr_rf is the transfer of data from the LoRa
sub-module on the transmitter PCB through radio frequency to the receiver's LoRa sub-module.
The rcvr_hrdwr_rx_code_data describes the data that is transferred from the LoRa modem on
the receiver to the code block running on the RP2040. Figure 1 shows the black box diagram for
the block.

Fig. 4.4.2.1 - Black Box for Transmitter

For breakdowns of the individual pieces of this block please reference the section
labeled Design of the transmitter hardware validation section. The hardware and its capabilities
are identical.

4.4.3. General Validation
For general validation of this block please reference the section labeled General

Validation of the transmitter hardware validation section.

4.4.4. Interface Validation

Interface Property Why is this interface of this
value?

Why do you know that your
design details for this block

above meet or exceed each
property?

otsd_rcvr_hrdwr_dcpwr

Inominal= 75mA This value is chosen based
on the sum of the typical
current values for each of
the heavy lifting
components on the board;
the RP2040, the LoRa
modem, and the GPS
module.

The RP2040 in active mode
will pull about 20mA on its
own, and up to 50mA
driving all its GPIO pins [1].
The LoRa modem typically
draws 134mA during
transmission and the GPS
module typically draws
32mA during acquisition
[4][5]. The memory module
draws 25mA during
reads/writes. The power
switch pulls 55uA typical
during power delivery [2].
The boost converter draws
6.5uA while operating. The
transmitter will transmit
periodically, and read/writes
will not be frequent so the
RP2040 and GPS module
will be the main power
sources giving
approximately 55mA.

Ipeak = 500mA This value was chosen with
the absolute maximum
current ratings of each of
the components in the block
in mind. During a heavy
load test for the RP2040
running video drives, audio
drivers and SD card access
(popcorn test) the uC draws
91mA. The LoRa modem
pulls 140mA maximum
during transmission. The
GPS module pulls 40mA
maximum. The memory
module pulls 25mA during
read/write. The power
switch pulls 90uA max
when delivering power. The
boost converter pulls 10uA
max while operating. This
sums to 297mA but a
conservative estimate of
200mA of headroom is
provided to ensure power
delivery is applied.

Each of the values for
absolute maximum current
draws come from the data
sheets of the individual
components. Summing
them all and rounding up
with conservative estimates
for max values will provide
enough for each component
individually and then some.

The linear voltage regulator
is rated to pull 1A of current
with a drop off voltage of
1.4V above the output
voltage. The power switch
is rated to deliver up to 1A
as well. The battery boost
IC is rated to deliver up to
1.8A which are well above
the required nominal
current.

Vmax = 5.25 This value was chosen
because it is the maximum
possible input from the USB
source or battery source.

This will be met because
the highest output from the
battery boost converter is
5.15V according to the
TPS61322 datasheet and
the highest output from
USB is 5.25V according to
standard USB specs.

Vmin = 4.75 This value was chosen
because it is the lowest
possible input from the USB
or battery source.

This will be met because
the lowest output from the
battery boost converter is
4.85V according to the
TPS61322 datasheet and
the lowest output from USB

is 4.75V according to
standard USB specs.

Vnominal= 5 This is the nominal input
from battery or USB.

This will be met because
the typical voltage output of
both the battery boost
converter and USB is 5V.

trnsmttr_hrdwr_rcvr_hrdwr_data

Data rate Min: 1 message per
5 seconds

This value was chosen
because it is easily
quantifiable and a reasonable
update frequency for
changing the position of the
tracking antenna.

This will work because the
GPS module gets a position
fix quicker than once per
second and software can be
used to slow the speed down
beyond that which can be
verified either using time data
or LED blinking frequency.

Data rate Max: 1 message
per 1 second

This value was chosen
because it is easily
quantifiable and a reasonable
update frequency for
changing the position of the
tracking antenna

This will work because the
GPS module gets a position
fix quicker than once per
second and software can be
used to slow the speed down
beyond that which can be
verified either using time data
or LED blinking frequency.

Messages = GPS Lat/Long
and time data

This was chosen because
the GPS module will transmit
Lat/Long and time data.

This will work because the
data will be formatted as C
strings and can be
transmitted as bytes over the
SPI interface.

Protocol = LoRa This was chosen because
the RP2040 and LoRa
module support SPI and it is
a simple interface.

This will work because there
are SPI libraries for
managing data transfers for
the RP2040 has libraries in

the C/C++ SDK and both
modules support SPI.

rcvr_hrdwr_rx_code_data

Data rate = 12Khz This value was chosen
because the clock that is
driving the RP2040
oscillates at 12KHz. This
will be the SCLK for the SPI
protocol and will dictate how
quickly data can be picked
up.

This will work because SPI
uses the SCLK to drive the
data transfer so since the
clock driving the RP2040
will be the same clock
SCLK is using it will work.

Messages = GPS Lat/Long
and time data

This was chosen because
the GPS module will
transmit Lat/Long and time
data. The data will come
through the LoRa module
and be pushed into the
MISO port.

This will work because both
the LoRa module and the
RP2040 support SPI and
the LoRa module can be a
SPI Slave while the
RP2040 will be the SPI
Master and will use the
RP2040 SCLK to clock the
data transfer [1][4].

Protocol = SPI This is chosen because it is
the easiest way to connect
to the ground station. The
RP2040 has libraries in the
C/C++ SDK to allow for
communication through its
USB port.

Libraries exist to allow the
RP2040 to transmit data
across USB. The board will
have a USB connection.

4.4.5. Verification Process

otsd_rcvr_hrdwr_dcpwr

To show this interface definition is met the following tests will be undertaken,

1. Connect the VBUS pin of a RP2040 based microcontroller to a power supply.

2. Set the power supply input voltage to 4.75V.
3. During normal operation ensure that the current stays at around 75mA and does not

exceed 500mA and that the device operates properly for 30 seconds.
4. Set the voltage to 5.25V and ensure that the current stays at around 75mA and does not

exceed 500mA and that the device operates properly for 30 seconds.

rcvr_hrdwr_rx_code_data

To show this interface definition is met the following tests will be undertaken,

1. Write code to flash an on-board LED when each message is sent from the code to the
hardware.

2. Timing the frequency of flashes will determine how many messages are sent per
second.

3. Since the data string sent will be formatted by the RX code block it can be ensured that it
is of the proper contents and data type. The data can be checked on the tracking
algorithm to ensure that it is received properly.

trnsmttr_hrdwr_rcvr_hrdwr_rf

To show this interface definition is met the following tests will be undertaken,

1. Connect the receiver to the PuTTY via USB and print out the contents of what is being
received from the LoRa packets.

2. View the timestamps of each message and when it is sent and ensure that the data rate
falls within the proper boundaries.

3. View the contents of each message and ensure that the data is GPS with latitude and
longitude information as well as time.

4.4.6. References and Files Links
4.4.6.1. References

For references please see the section labeled References and File Links in the
transmitter hardware verification section.

4.4.6.2. Files Links
For file links please see the section labeled References and File Links in the transmitter

hardware verification section.

4.4.7. Revision Table
Author Date Description

Sean Bullis 3/13/23 Section Creation

4.5. Turntable Controller
4.5.1. Description

The Turntable-Controller is a PCB based block designed to process heading commands
from the Tracking Algorithm and UI (user interface) blocks, receive encoder data and issue
motor commands to the Turntable block. In the context of the system, the Turntable-Controller
acts as motion controller and a data processor: not that it does not handle GPS data from the
transmit/receive blocks or perform bearing computations. Importantly, this block allows
automatic Turntable positioning with just 12 or 24 VDC power and heading commands from
power-on to off.

Built around an Arduino Micro microcontroller, the block is designed for flexibility and
upgradeability. Each major sub-system receives a sub-PCB to support circuits: there will be one
carrier, and at most two motor drivers. This is done to reduce costly reworks if all circuits were
on a single PCB and allow field upgrading or repairs of subsystems. Flexible cabling will
connect sub-PCBs together within the block.

All functions such as initialization, data processing, C&C (command and control) are
automatic after power up. Initialization sets the Arduino up then puts control variables and
commands the Turntable block to point North. Several loops periodically check Turntable
position (10 times a second), processes commands sent via UART (once a second), and issues
motor control commands (1000 times a second).

4.5.2. Design
Functionality requires both hardware and software and the goal of easy integration and

flexibility of block internals and interfaces drove the design of the Turntable-Controller PCB.
Integration is primarily achieved through components and values already used by the OSU
Robotics Club (OSURC) and secondarily through design choices such as distributing block
sub-systems onto separate PCBs to accommodate sub-system requirements. Flexibility is
added through components with specifications beyond basic requirements.

a) Interfaces and Black Box
- trntbl_trntbl-cntrllr_comm: accepts absolute (unique data per position) angular

position of the Turntable block over SPI.
- u_trntbl-cntrllr_data: accepts manual bearing commands over UART.
- trckng_lgrthm_antnn_systms_cntrllr_data: accepts automatic bearing commands

over UART.
- otsd_trntbl-cntrllr_dcpwr: accepts 24 VDC power from a commercial-off-the-shelf

(COTS) power supply.
- trntbl-cntrllr_trntbl_comm: issues configuration commands to angle sensor in the

Turntable block over SPI.
- trntbl-cntrllr_trntbl_acpwr: 12 V, 0.4 A stepper motor power to Turntable block motors.

Fig. 4.5.2.1 - Black Box

b) Design Documents
Below are, in order of appearance, are stepper motor driver (RDF_E_TB6600), Arduino

carrier (RDF_E_Carrier), and carrier board sub-schematics.
The decision for separate schematics and PCBs per sub-system is elaborated on in

General Validation but, as a general introduction, done to reduce risk, costs, and ease
assembly, upgrades, and repairs.

Block interfaces in each schematic will be labeled with an INTERFACE label and will be
located next to the associated connector(s). For instance, in the RDF_E_TB6600 schematic,
INTERFACE trntbl-cntrllr_trntbl_acpwr is beside connector J3.

Fig. 4.5.2.2 - TB6600 Sub-PCB Schematic

Fig. 4.5.2.3 - Arduino Carrier Board Schematic

Fig. 4.5.2.4 - RS422 Sub-Circuit Schematic

Fig. 4.5.2.5 - 555 Timer Sub-Circuit Schematic

Fig. 4.5.2.6 - 9 V Regulator

Fig. 4.5.2.7 - 5 V Regulator

There are two potentiometers in the block. One controls the maximum output current of
the TB6600 sub-PCB and is calculated using using equation Iout = (⅓ * Vref / RnF) [TB6600, pg.
7]. Turntable motors will be operated at 0.4 A, to minimize heating, so Iout = (⅓ * Vref / RnF) is
solved using Iout = 0.4 A and RnF = 0.2 Ω to obtain Vref = 0.24 V. Vref must be set before applying
12 V power to the sub-PCB.

The other controls the clock frequency of the Arduino carrier board PCB 555 timer. This
can be adjusted during operation with an oscilloscope.

Additionally, there is a DIP switch with 5 toggles controlling TB6600 configuration
[TB6600, pg. 4, 5, 13]. Circuits 1 and 2 should be set on for 100% torque output and automatic
return from over current or temperature exception. Remaining three control microstepping ratio
and configured according to TB6600 datasheet and desired Turntable block performance.

All wiring will use Molex and JST (Japan Solderless Terminal) crimp connectors: crimp
(contact is physically pressed onto wire) connectors are used to allow repair and rework. Wires
without a specified type will use general purpose hookup wire of the specified AWG.

Fig. 4.5.2.8 - lock Internal Wiring Harness

https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG

While this block is an electrical block, software is needed to handle data input and
control outputs. It is written in Arduino C/C++ via the Arduino IDE and deployed to an Arduino
Micro via USB Micro cable. The software performs all setup, processing, and shutdown
functions without manual control.

Fig. 4.5.2.9 - Processing and Decision Making Flowchart

4.5.3. General Validation
A distinct design choice is the usage of sub-PCBs per each sub-system. This layout

does increase individual PCB count within the block but is done to reduce risk, cost, and
improve block performance, reworkability. Crucially, a single PCB is a single failure point: if the
motor driver circuit is defective then the entire board needs to be reordered. For performance,
separating motor drivers from SPI data lines prevents EMI (electromagnetic interference)
issues.

Reworking sub-PCBs is much easier. Flexible crimped cables link each sub-PCB to the
Arduino carrier board and can be removed as needed. Sub-PCBs can be replaced, upgraded,
removed, or added without block downtime.

Each PCB is designed in KiCAD which sets defaults for trace widths, via diameters, et
cetera. Each parameter was evaluated and adjusted to meet IC, block interna, and interface

parameters: generally, the default case is sufficient. Of particular note is the usage of 1 ounce
copper content even in high power situations which is validated by ensuring the narrowest point
does not exceed the minimum trace required for a desired current.

Components are SMD (surface mounted device) mounting type when possible though
current supply chain issues do occasionally require through hole. SOIC (small outline integrated
circuit) and 0603 (0.060” x 0.030”) packages are used to reduce component footprint and shrink
PCB sizes. Through hole capacitors are constrained to a 5 mm diameter and 2 mm lead pitch
(separation between pins). All passive components have a 50 V minimum to prevent destruction
during brief overloads.

Connectors are standardized to the JST (Japan Solderless Terminal) XH and Molex
5569 series of rectangular crimp connectors because both are currently or recently used by
OSURC. This eliminates the need to train future members and provides a source of stock if
supply issues arise.

With supply, the majority of passive components have in-stock alternatives. Specialized
components such as the MCP1501-33xSN, 555 timer, trim potentiometers have compatible
alternatives but some such as the TB6600 driver cannot be replaced.

a) TB6600 Sub-PCB
Driving the stepper motors of the Turntable block is achieved using the Toshiba

Semiconductor and Storage TB6600HG. It is selected for its range of 8 - 42 VDC input and 4.5A
output maximum in order to support steppers of all sizes [TB6600, pg. 26]. The HZIP-25 through
hole package is a non-issue because of its heat dissipation (3.2 W) [TB6600, pg. 26] and the
through holes simplifying sub-PCB layout. Finally, the TB6600 uses few external components
[TB6600, pg. 31], and is controlled through just direction and clock inputs [TB6600, pg. 30]: this
makes design and control easier.

Noise output, microstepping (division of one step into N steps) were not important. Noise
is expected to be covered up by outdoor ambience and no noise requirements are design
parameters. A minimum microstepping ratio of 1/16 is available [TB6600, pg. 7] and allows a
0.1125° step which sufficiently satisfies the “System Accuracy” Engineering Requirement (ER).

For the TB6600, a sub-PCB allows advantageous positioning to maximize cooling and
EMI onto other block sub-systems. PCB costs were reduced with horizontal positioning of the
HZIP-25.

Control of output maximum current is defined by an analog voltage at the TB6600 Vref

pin, current sensing resistor, and requires no additional communication circuitry or software. For
Iout adjustment, the Microchip Technology MCP1501-33xSN generates a precision 3.3 V
[MCP1501-33xSN, pg. 3] reference that is divided by 51 kΩ resistor and 100 kΩ potentiometer
network for a range of 0 - 2.185 V. Vref . This does exceed the TB6600 Vref 1.95 V limit [TB6600,
pg. 26] but is verified in a post-assembly calibration procedure with the TB6600 off. To prevent
change during block install , the potentiometer will be fixed using temporary adhesives.

Components associated with power handling i.e. the current sense resistors and motor
power input plug are rated at or above operational conditions. The sense resistors are
MP915-0.20-1% TO-126 resistors with a maximum dissipation of 15 W [MP915-0.20-1%, pg. 2].
Intended current is 0.4 A per channel so by P = I2R each resistors will see P = 0.42*0.2 for 0.32

https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://ww1.microchip.com/downloads/en/DeviceDoc/20005474E.pdf
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
http://www.caddock.com/Online_catalog/Mrktg_Lit/MP9000_Series.pdf

W of heat. The TB6600 indicates a total maximum on-resistance of 0.6 Ω which, at 0.4 A, is
0.096 W: maximum no heatsink dissipation is 3.2 W.

For connectors, the Molex 5569 in 2 pin configuration supports 600 V and 13 A per
contact [Molex 5569, pg. 2]. Lower voltage and current connectors use the Japan Solderless
Terminals XH series of connectors which support 250 V and 3 A per contact [JST XH, pg. 1].
These components are used by OSURC which can provide component stock.

On the PCB, solid power and GND (0 V or ground) planes are used to support high
currents and reduce EMI and since high impedances (resistance to changing signals) could
degrade TB6600 performance. Large power planes also distribute heat under high power
scenarios. All lower power control signals use a standard 0.25 mm width trace to handle 0.8 A
of current while motor power lines use a 0.7 mm width trace to handle 1.8 A of current. A 1
ounce of copper content will be used to save costs and copper resources and will sustain 1.8 A
currents.

b) Arduino Carrier Board
The choice for Arduino Micro is for its simplicity and capability. A low power draw over

USB or 7 - 12 V simplifies power circuitry [1]. For inputs and outputs, the Arduino supports 12
ADC inputs with 5 V range, 2 SPI, 1 I2C, and 20 digital input/output with 5 V logic levels which is
sufficient for all block internal and interface connections [1].

A 28 KB program and 2.5 KB SRAM memories provide sufficient space for program and
variables [1]. Largest variables will be IEEE floats with size of 4 bytes: the 2.5 KB SRAM can
handle 625 float variables. The 28 KB program memory limit will not be reached because
loaded code will only perform decision making without storing large arrays.

As an Arduino product, the Arduino IDE, built-in and 3rd party libraries, and easy
deployment simplify the software workflow. For instance, libraries for reading angle data from an
AS5048A (on the Turntable block) exist [2] and eliminate the need for custom functions.

c) 5V, 9V Regulator
The low voltage, low current requirements of all sub-PCBs allows usage of linear

regulators instead of complex switching regulators. STMicroelectronics’s L78S family is chosen
for output currents of 2 A in an easy to use TO-220 package [L78SXX, pg. 9, 11, 13]. Output
ripple and deviation, which may be larger with linear regulators, is not critical since accurate
voltages (i.e. the 3.3 V references) are generated with dedicated reference ICs.

Higher power buses such as the 12 V line are stabilized using bulk capacitance. These
will reduce ripple and transients during sudden demands in power such as rapid commands to
the stepper motor drivers or during system startup
.

d) UART Receiver
Data from the OSURC groundstation is sent through UART (Universal Asynchronous

Receiver/Transmitter) using the RS232 standard.
UART is natively supported by the Arduino thus requiring minimal software overhead to

receive data. A UART baud rate of 9600 bits per second is sufficient for one float variable of 32
bits every one second at maximum command speed. This correlates to 3.3 mSec per command
so no communication bottlenecks will occur.

https://www.molex.com/webdocs/datasheets/pdf/en-us/0026013114_PCB_HEADERS.pdf
https://www.jst.com/wp-content/uploads/2021/01/eXH-new.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.pdf

However, the RS232 electrical parameters use voltages in the range 5 - 15 V [3] but are
level shifted using the Texas Instruments MAX232. This IC is chosen for its built-in charge
pumps (a device that increases voltage) [MAX232, pg. 1], minimal external component count,
and ease of design [MAX232, pg. 10].

e) RS422 Transceiver
Angle data reported from the Turntable block is sent over SPI that is physically

transmitted with the RS422 electrical standard. The RS422 standard is implemented to reduce
the effects of EMI from motors and the overall system antenna through differential signals [4] .
To drive and receive, the Texas Instrument SN75C1168N provides two drivers and receivers for
the two output and one input signals of SPI [SN75C1168N, pg. 3].

However, the SN75C1168N is designed to use transmission cables of 100 Ω impedance
(resistance to AC signal). This is satisfied by the Molex 1000680108 which is a twinaxial (two
side-by-side cables) cable of 28 AWG per conductor [1000680108, pg. 1]. For harness
assembly, the 27.5 AWG will fit into the JST SXH-001T-P0.6 connector that accommodates 22 -
28 AWG following the JST standard of OSURC [SXH-001T-P0.6, pg. 2].

A manufactured validated application circuit is combined with industry practices to create
the RS422 sub-circuit and reduce design errors and risk. This includes the series 22 Ω on
output signals and parallel 100 Ω resistors to terminate differential signals [5]. Transmission
speed will be constrained by the Arduino to exceed SN75C1168N performance which is
computed to be about 50 MHz maximum from 20 ns total for rise and fall [SN75C1168N, pg. 7].
Reducing clock speed is acceptable since the AS5048A supports lower clock speeds
[AS5048A, pg. 12].

f) Clock Generation
Clock generation is through the ubiquitous 555 timer. A simple 50 % duty cycle (ratio of

on to off) is achieved through resistors, capacitors, and potentiometer to adjust output frequency
. Validation was done through falstad circuit simulator [Sim File].

4.5.4. Interface Validation
Interface: trntbl_trntbl-cntrllr_comm

Note that references to AS5048A are purely for determining values. The AS5048A is part
of the Turntable actuator block.

Messages:
Data: 16-bit
data
package
containing
14-bit angle
data

Received message size is
referenced from AS5048A
SPI interface
characteristics.

- Turntable block AS5048A reports data in
a 16-bit data package (AS5048A, SPI
Read Package, fig. 20, pg. 15).

- Bit 13:0 is the 14-bit data
- Other bits are for control

Other:
RS422
Differential
Logic High

This is the positive and
negativeVOH threshold of
the SN75C1168N.

- SN75C1168N reports a minimum required
VOH of 2V inverting (SN75C1168N, Driver
Section, Electrical Characteristics, pg. 6).

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fmax232
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fmax232
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.molex.com/pdm_docs/sd/1000680108_sd.pdf
https://www.jst-mfg.com/product/pdf/eng/eXH.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://drive.google.com/file/d/1y9Z1gmqx6X80IfSl0sj19NV8qep19TuO/view?usp=sharing
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

Vmin: +/-2V

Protocol: 4
Wire SPI
(data
protocol)

The AS5048A variant uses
an SPI for commands and
outputs.

- SPI is chosen for control features at the
cost of additional input/output hardware.

- Dedicated input and output
prevents collisions.

- Chip select allows multiple
peripherals on one SPI network.

Interface: trntbl_trntbl-cntrllr_comm
Note that references to AS5048A are purely for determining values. The AS5048A is part

of the Turntable actuator block.

Messages:
Data: 16-bit
data
package
containing
address and
read/write
command

Received message size is
referenced from AS5048A
SPI interface
characteristics.

- Turntable block AS5048A receives
commands in a 16-bit data package
(AS5048A, SPI Command Package, fig.
19, pg. 14).

- Bit 15 (MSB) is the even parity bit
- Bit 14 is read (1) or write (0)

command.
- Bit 13:0 is the 14-bit address to

read from or write to.

Other:
RS422
Differential
Logic High
Vmin: +/-2V

This is the positive and
negativeVOH threshold of
the SN75C1168N.

- SN75C1168N reports a minimum required
VOH of 2V inverting (SN75C1168N, Driver
Section, Electrical Characteristics, pg. 6).

Protocol: 4
Wire SPI
(data
protocol)

The AS5048A variant uses
an SPI for commands and
outputs.

- SPI is chosen for control features at the
cost of additional input/output hardware.

- Dedicated input and output
prevents collisions.

- Chip select allows multiple
peripherals on one SPI network.

Interface: trntbl-cntrllr_trntbl_acpwr

Inominal:
0.4A (per
stepper
positive
channel)

Turntable motor is rated for
0.4 A per coil.

- Turntable stepper motor 17HS15-1504S
is rated for 1.5 A [6].

- TB6600 can output 5 A of maximum
current (TB6600, Electrical
Characteristics, pg. 27)

Vnominal:
12V (per
stepper
positive
channel)

Turntable motor is rated for
12 V but can accept higher
and lower voltages.

- Turntable stepper motor 17HS15-1504S
has been tested at 24 V. [7].

- Will use operational voltage of 12V and
coil current 0.4A for safe and low heat
operation.

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG

Vmax: 14V Turntable - LRS-50-12 has a maximum output of 13.8
V (LRS-50-12, Specification, pg. 2) which
could be sent 1:1 through the TB6600.

Other: Imax:
1A

Derated value from
17HS15-1504S maximum
of 1.5 A continuous.

- Turntable stepper motor 17HS15-1504S
is rated for 1.5 A [6].

Interface: trntbl-cntrllr_trntbl_dcpwr
Note that references to AS5048A are purely for determining values. The AS5048A is part

of the Turntable actuator block.

Inominal:
21mA

Computed by summing
operational current
requirements of circuits
connected to this interface.

- AS5048A in TSSOP-14 package with max
draw of 15 mA (AS5048A, fig. 8, pg. 7)

- SN75C1168N in DIP-16 with max draw of
6mA for just logic (SN75C1168N,
Electrical Characteristics, pg. 6)

Ipeak:
215mA

Computed by summing
operational current
requirements of circuits
connected to this interface.

- AS5048A in TSSOP-14 package with max
draw of 15 mA (AS5048A, fig. 8, pg. 7)

- SN75C1168N in DIP-16 with max draw of
200mA for logic and output
(SN75C1168N, Absolute Maximum
Ratings, pg. 5)

Vmax: 5.5V Determined from AS5048A
datasheet.

- AS5048A reports a maximum of 5.5V to
VCC (AS5048A, Operating Conditions,
fig.8, pg 7).

- SN75C1168N reports a maximum of 5.5V
to VCC (SN75C1168N, Recommended
Operating Conditions, pg. 5)

Vmin: 4.5V Determined from AS5048A
datasheet.

- AS5048A reports a minimum of 4.5V to
VCC (AS5048A, Operating Conditions,
fig.8, pg 7).

- SN75C1168N reports a minimum of
4.5VCC (SN75C1168N, Recommended
Operating Conditions, pg. 5)

Vnominal:
5V

Determined from AS5048A
datasheet.

- AS5048A accepts a range of 4.5V to 5.5V
(AS5048A, Operating Conditions, fig.8, pg
7).

- SN75C1168N accepts a range of 4.5V to
5.5V (SN75C1168N, Recommended
Operating Conditions, pg. 5)

Interface: u_trntbl-cntrllr_data

Datarate: The user interface is - Each message will be held in the UART

https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

Message
Rate Max:
Unlimited
messages
every 1
second

controlled by a human
being who may be
impatient or need rapid
changes.

buffer.
- Processing occurs every 1 seconds and

flushes the buffer to prevent overloading.

Messages:
Angle: Must
be from 0.0
- 360.0
degrees

Bearing data is typically
represented as a numerical
value.
The user interface is more
intuitive if decimal numbers
are used.

- System will operate using degrees
relative to longitude lines.

- Degrees is an easily understandable
representation of angular position.

- Arduino control algorithm rejects
out-of-bounds values.

Interface: trckng_lgrthm_antnn_systms_cntrllr_data

Datarate:
Message
Rate Max: 1
message
every 1
second

Command rate is limited to
save groundstation and
Arduino resources.

- The Arduino will be programmed to
expect a new message 1 seconds after
the last message.

Datarate:
Serial
Transmissio
n Rate:
9600 baud

A data rate defines
command transfer rate.

- 9600 bits per second is 1200 bytes per
second. Thus, a 32-bit float takes 3.3
milliseconds to transmit.

Datarate:
Message
Rate Min: 1
message
every 5
seconds

Command rate has a
minimum rate to allow
reasonably fast tracking of
the OSURC rover.

- The Arduino will hold the last provided
heading until a new message is received.

Messages:
Angle: Must
be from 0.0
- 360.0
degrees

Bearing data is typically
represented as a numerical
value.
The user interface is more
intuitive if decimal numbers
are used.

- System will operate using degrees
relative to longitude lines.

- Degrees is an easily understandable
representation of angular position.

- Arduino control algorithm rejects
out-of-bounds values.

Protocol:
UART Serial

Transferred commands
need a common protocol
between groundstation and
Arduino.

- The Arduino supports native supports
UART as part of the SoftwareSerial()
library.

- The groundstation will use a USB - UART
converter with configurable baud rate
[USB-RS232-WE-1800-BT_5.0, pg. 5].

http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS232_CABLES.pdf

Interface: Otsd_trntbl-cntrllr_dcpwr

Inominal: 1A Computed by summing the
typical operation rating of
all integrated circuits.

- AS5048A in TSSOP-14 package with max
draw of 15 mA (AS5048A, fig. 8, pg. 7)

- TB6600 in HZIP-25 package with draw of
0.4 A per motor coil over four coils for a
total of 1.6 A. Additional draw of 4.2mA
with RESET enabled in 1/1 step mode
(TB6600, Electrical Characteristics, pg.
27).

- LMV324 in SOIC-14 with max draw of
1.160 mA for logic (LMV324, Electrical
Characteristics, pg. 6).

- Typical supply current not listed so
will use maximum

- Two SN75C1168N in DIP-16 with max
draw of 12 mA for just logic
(SN75C1168N, Electrical Characteristics,
pg. 6)

- Arduino Micro with max draw of 500 mA
(USB standard) [1]

- Quiescent currents of L78S regulators
sum to 24 mA (L78SXX, Electrical
Characteristics, pg. 9 - 13)

Ipeak: 2.2 Computed by summing the
“worst-case” ratings.

- AS5048A in TSSOP-14 package with max
draw of 15 mA (AS5048A, fig. 8, pg. 7)

- TB6600 in HZIP-25 is limited to 0.4 per
coil over four coils for 1.6 A (TB6600,
Electrical Characteristics, pg. 27).

- LMV324 in SOIC-14 with max draw of
1.160 mA for logic (LMV324, Electrical
Characteristics, pg. 6).

- Typical supply current not listed so
will use maximum

- Two SN75C1168N in DIP-16 with max
draw of 200 mA each (SN75C1168N,
Absolute Maximum Ratings, pg. 5)

- Arduino Micro with max draw of 500 mA
(USB standard) [1]

Vmax: 13 Determined from the
maximum output of
selected AC-DC converter

- LRS-50-12 has a maximum output of 13.8
V (LRS-50-12, Specification, pg. 2)

Vmin: 11 Determined from the
lowest acceptable input
voltage in the block.

- TB6600 lists 8V as the absolute minimum
input (TB6600, Operating Range, pg. 26)

- LRS-50-12 has minimum output of 10.2 V
(LRS-50-12, Specification, pg. 2)

Vnominal: Common supply voltage. Stepper motors are driven at 12V nominally

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf
https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf

12 Common supply voltage

4.5.5. Verification Process
Interface under test: otsd_trntbl-cntrllr_dcpwr

Testing Materials:
- Turntable-Controller Block
- Electronic Load
- DC Supply
- Multimeter
- Power Leads
- Multimeter Leads

1. Connect DC Supply to Turntable-Controller
2. Adjust DC Supply to 12 V output

a. Verify that motor control, encoder data, UART function
b. If operations are successful then this verifies nominal input range

3. Adjust DC Supply to 11 V output
4. Adjust DC Supply to 13 V output

a. Verify that motor control, encoder data, UART function
b. If operations are successful then this verifies voltage input range

5. Observe current draw at all conditions
a. If below 2.2 A then this verifies operation without exceeding maximum current
b. If below or around 1 A then this verifies operation at nominal current

Interface under test: trntbl_trntbl-cntrllr_comm and trntbl-cntrllr_trntbl_comm
Testing Materials:

- Turntable-Controller Block
- AS5048A Encoder Board of Turntable Block
- DC Supply
- Power Leads
- Oscilloscope
- Probe Leads
- Computer with Arduino Serial Monitor
- USB A to USB Micro B

1. Connect Computer to Arduino
2. Apply 12 V to block
3. Watch Serial Monitor

a. 1st message will be command to AS5048A in 16-bit string
b. 2nd message will be data received from AS5048A in 16-bit string
c. If messages are displayed and received then 16-bit data package size is verified

4. Attach oscilloscope leads to SPI + and SPI - signals (CLI, MISO, MOSI)
a. If magnitude of voltages are > 2 V then RS422 logic level is verified

5. Attach oscilloscope leads to SPI test points (CLK, MISO, MOSI, ~CSn)
6. Configure oscilloscope to decode SPI

a. 16-bit length
b. Read on rising of clock
c. Inverted CSn

7. Observe decoded data
a. If MOSI is 0x1111111111111111 then this verifies command 16-bit string
b. If MSIO is 16-bit (data varies) then this verifies data 16-bit string
c. If both observed then this also verifies SPI interface in use

Interface under test: trntbl-cntrllr_trntbl_acpwr
Testing Materials:

- Turntable-Controller Block
- 17HS15-1504S Stepper Motor and Terminal Blocks
- DC Supply
- Multimeter
- Oscilloscope
- Multimeter Leads
- Oscilloscope Leads

1. Connect 17HS15-1504S to block
2. Set multimeter to current mode
3. Attach multimeter leads between 17HS15-1504S Channel A+ and TB6600 subsystem

J1, Pin 1
a. Use test terminal block as breakout

4. Apply 12 V
a. If current on channel is nominally 0.4 A then this verifies nominal channel current

5. Adjust JV1 of TB6600 sub-system
a. Adjust until the current reaches 1.0 A.
b. Allow current to remain steady for 1 minute
c. If current holds at 1.0 A then this verifies maximum channel current

6. Stop 12 V
7. Remove multimeter leads and reattach cabling between Channel A+ and TB6600

sub-system J1.
8. Attach Oscilloscope (+) lead to Channel A+, (-) lead to Channel A-
9. Apply 12 V

a. If voltage is averaged 12 V then this verifies nominal channel voltage
b. If voltage is < 14 V then this verifies maximum channel voltage

Interface under test: trntbl-cntrllr_trntbl_dcpwr
Testing Materials:

- Turntable-Controller Block
- Electronic Load
- DC Supply
- Multimeter
- Multimeter Leads
- Power Leads

1. Attach DC load to 5 V output.
2. Attach multimeter leads to 5 V output.
3. Apply 12 V to block
4. Set DC load to 21 mA

a. If voltage remains 5 V nominally then nominal current verified
b. If voltage is between 4.5 and 5.5 V then voltage verified

5. Set DC load to 215 mA
a. If voltage remains 5 V nominally then maximum current verified

Interface under test: u_trntbl-cntrllr_data and trckng_lgrthm_trntbl-cntrllr_data
Testing Materials:

- Turntable-Controller Block
- Computer with Arduino Serial Monitor and PUTTY
- Timer
- USB A to USB Micro B
- FTDI Cable (USB-RS232-WE-1800-BT_5.0)

1. Connect Computer to Arduino
2. Connect Serial Monitor
3. Send numerical decimal (i.e. 100.0) value

a. Arduino Serial Monitor will display 1st message details
b. Send two numerical values 1 second apart
c. Arduino Serial Monitor will display 1st message details
d. Arduino Serial Monitor will display 2nd message details
e. If messages correctly update to show 1st and 2nd messages 1 second apart then

this verifies nominal data rate of 1 message/1 second
4. Send two numerical values 5 second apart

a. Repeat 4a, 4b
b. If both readouts correct then minimum data rate of 1 message/5 seconds verified

5. Send three numerical values by sending 001.0002.0003.0 in one string
a. Arduino Serial Monitor will display 003.0 (discards “older 001.0 and 002.0).
b. If 003.0 command received then arbitrary user data rate verified

6. Connect Oscilloscope (+) lead to orange pin, (-) to black pin, of FTDI cable

7. Connect FTDI to test computer
8. Connect using PuTTY over Serial

a. 9600 baud
b. 8-bits
c. No parity
d. 1-bit stop

9. Send characters using PuTTY
a. If oscilloscope nominally indicates 9600 Hz across narrowest pulse then this

verifies 9600 baud rate
b. If decoded data matches send character then this verifies UART
c. Can show that pins 1, 0 of the block Arduino Micro are UART only pins

4.5.6. References and Files Links
4.5.6.1. References

[1] Arduino, “Arduino Micro,” Arduino, Available: https://store.arduino.cc/products/arduino-micro
[Accessed: Jan. 31, 2023]
[2] Emiliano Borghi, AS5048A.cpp. [Source Code]. Github, 2021
[3] Analog Devices, “Fundamentals of RS-232 Serial Communications,” Analog Devices,
https://www.analog.com/en/technical-articles/fundamentals-of-rs232-serial-communications.html
[Accessed: Feb. 08, 2023]
[4] R. Smith, “QUICK REFERENCE FOR RS485, RS422, RS232 AND RS423,” [Online].
Available: http://www.rs485.com/rs485spec.html [Accessed: Feb. 11, 2023]
[5] T Kugelstadt, “Extending the SPI bus for long-distance communication,” ti.com, [Online],
Available: https://www.ti.com/lit/an/slyt441/slyt441.pdf [Accessed: Feb. 11, 2023]
[6] Stepperonline, “Nema 17 Bipolar 42Ncm(59.49oz.in) 1.5A 42x42x39mm 4 Wires w/ 1m
Cable & Connector,” omc-stepperonline.com, [Online]. Available:
https://www.omc-stepperonline.com/nema-17-bipolar-42ncm-59-49oz-in-1-5a-42x42x39mm-4-wi
res-w-1m-cable-connector-17hs15-1504s [Accessed: Jan. 31, 2023]
[7] Stepperonline, “1403/17HS15-1504S_Torque_Curve,”omc-stepperonline.com, [Online].
Available:
https://www.omc-stepperonline.com/index.php?route=product/product/get_file&file=1403/17HS1
5-1504S_Torque_Curve.pdf [Accessed: Jan. 31, 2023]

4.5.6.2. Files Links
1) TB6600 Datasheet:

https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
2) AS5048A Datasheet:

https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
3) Molex 5569 Datasheet:

https://www.molex.com/webdocs/datasheets/pdf/en-us/0026013114_PCB_HEADERS.pd
f

4) JST XH Datasheet: https://www.jst.com/wp-content/uploads/2021/01/eXH-new.pdf

https://store.arduino.cc/products/arduino-micro
https://www.analog.com/en/technical-articles/fundamentals-of-rs232-serial-communications.html
http://www.rs485.com/rs485spec.html
https://www.ti.com/lit/an/slyt441/slyt441.pdf
https://www.omc-stepperonline.com/nema-17-bipolar-42ncm-59-49oz-in-1-5a-42x42x39mm-4-wires-w-1m-cable-connector-17hs15-1504s
https://www.omc-stepperonline.com/nema-17-bipolar-42ncm-59-49oz-in-1-5a-42x42x39mm-4-wires-w-1m-cable-connector-17hs15-1504s
https://www.omc-stepperonline.com/index.php?route=product/product/get_file&file=1403/17HS15-1504S_Torque_Curve.pdf
https://www.omc-stepperonline.com/index.php?route=product/product/get_file&file=1403/17HS15-1504S_Torque_Curve.pdf
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://www.molex.com/webdocs/datasheets/pdf/en-us/0026013114_PCB_HEADERS.pdf
https://www.molex.com/webdocs/datasheets/pdf/en-us/0026013114_PCB_HEADERS.pdf
https://www.jst.com/wp-content/uploads/2021/01/eXH-new.pdf

5) MAX232 Datasheet:
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F
%2Fwww.ti.com%2Flit%2Fgpn%2Fmax232

6) L78SXX Datasheet:
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f
/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.p
df

7) MCP1501-33xSN Datasheet:
https://ww1.microchip.com/downloads/en/DeviceDoc/20005474E.pdf

8) MP915-0.20-1% Datasheet:
http://www.caddock.com/Online_catalog/Mrktg_Lit/MP9000_Series.pdf

9) SN75C1168N Datasheet:
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F
%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

10) 1000680108 Datasheet: https://www.molex.com/pdm_docs/sd/1000680108_sd.pdf
11) SXH-001T-P0.6 Datasheet: https://www.jst-mfg.com/product/pdf/eng/eXH.pdf
12) USB-RS232-WE-1800-BT_5.0 Datasheet:

http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS232_CABL
ES.pdf

13) LRS-50-12 Datasheet:
https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf

14) falstad 50 % Duty Cycle Clock Generator Circuit:
https://drive.google.com/file/d/1y9Z1gmqx6X80IfSl0sj19NV8qep19TuO/view?usp=sharin
g

4.5.7. Revision Table
Author Date Description

Angel Huang 1/20/23 Initial section creation

Angel Huang 2/5/23 Revised TB6600 Info
- Removed torque and

RPM calculations
- Added justification and

design of TB6600 circuit
Reworked Design

- Reexamined focus and
moved information too
appropriate sections

- Added placeholders for
images + resources

- Removed extraneous
and redundant
information

Organization
- Added A, B … Z

subsections to General
Validation, Design

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fmax232
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fmax232
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/20005474E.pdf
http://www.caddock.com/Online_catalog/Mrktg_Lit/MP9000_Series.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.molex.com/pdm_docs/sd/1000680108_sd.pdf
https://www.jst-mfg.com/product/pdf/eng/eXH.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS232_CABLES.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS232_CABLES.pdf
https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf
https://drive.google.com/file/d/1y9Z1gmqx6X80IfSl0sj19NV8qep19TuO/view?usp=sharing
https://drive.google.com/file/d/1y9Z1gmqx6X80IfSl0sj19NV8qep19TuO/view?usp=sharing

Angel Huang 2/8/23 Revised HMC1021S Info
Organization

- Added A, B … Z
subsections to General
Validation, Design

Revised Carrier Board Info
Removed redundant placeholder
graphics

Angel Huang 2/10/23 Finished writing Carrier board
section

- Added Clock generation
sub-section

Cleaned up Design section

Angel Huang 2/11/23 Removed redundant information
from Interface Validation
Reworked Description
General revision, cleanup,
redundancy removal
Reworked Verification Plan
Reorganized Verification Plan
Moved reference and file links in
from Digikey order and
changelog

Angel Huang 2/15/23 Fixed
trntbl-cntrllr_trntbl_comm
duplication with
trntbl_trntbl-cntrllr_comm

Angel Huang 3/13/23 Removed HMC1021S details
Updated reference, file links, to
reflect HMC1021S removal

Kira Kopcho 5/14/23 Format revision table to follow
style of the rest of the document

4.6. Turntable
4.6.1. Description

The Turntable is an Actuator based block designed to mount a Ubiquity directional
antenna: this antenna is different from the GPS antennas in other blocks. While being an
actuator, the block does not output any motion: all motion is contained within the block. All
internal motion is strictly rotational in the horizontal plane.

Overall physical structure comprises three subassemblies is based on extruded
aluminum L-channel, structural framing, and plastic for high strength and low weight: the
majority of weight will be contributed by the Ubiquity antenna! A foundation sub-assembly
provides an electrical box and adjustable feet for unlevel terrain. The tower sub-assembly
resembles a horizontal "U" to provide support for the antenna turntable from above and below
for rigidity. Finally, the turntable itself is a cradle built around the Ubiquity that mounts to two
Lazy Susan mechanisms on the tower sub-assembly.

To provide angular positioning feedback, the Turntable mounts an encoder sub-system
based around the AS5048A magnetic encoder. It is mounted on the tower sub-assembly and
the magnet is on the cradle sub-assembly. Data between Turntable and Turntable-Controller is
sent through an RS422 network to reduce negative effects of EMI (Electromagnetic
Interference) based on the SN75C1168N full duplex (simultaneous send and receive)
component. 5V power is provided from the Turntable-Controller block.

4.6.2. Design
The Turntable actuator block is unconventional in that it does not output mechanical

force or motion: all motion is contained within the block. Therefore, it needs to integrate
mechanical and electrical systems, and their respective issues, together. Below is an
introduction to the block via the “black box” input, output diagram.

Fig. 4.6.2.1 - Black Box I/O Diagram

a) Interfaces
- trntbl_trntbl-cntrllr_comm: accepts absolute (unique data per position) angular

position of the Turntable block over SPI.
- trntbl-cntrllr_trntbl_comm: issues configuration commands to angle sensor in the

Turntable block over SPI.
- trntbl-cntrllr_trntbl_acpwr: 12 V, 0.4 A stepper motor power to Turntable block motors.
- trntbl-cntrllr_trntbl_dcpwr: 5 V peripheral and sensor power to the Turntable block.

Primarily used for the aforementioned angle sensor.

A primary design goal is to reduce weight, promote modularity, and provide ease of use.
Aluminum framing components such as McMaster 47065T101 combine high strength, low
weight (versus steel), and modularity into a reasonably priced component. Similarly,
Polycarbonate (McMaster 8574K192) is easily machined into lightweight but strong flat
components such as brackets and 3D printed PLA forms cheap but complex and reasonably
strong components such as PCB or 90° brackets.

https://www.mcmaster.com/47065T101/
https://www.mcmaster.com/8574K192/

The primary screw choice is #8-32 (3/16” diameter with 32 threads per inch) in an
attempt to standardize screw size and required tooling. #¼-20 screws are used for connecting
aluminum frame pieces together or peripherals to said frames. #6-32 is used in tight spaces
such as the turntables. Finally, M3 and M5 are used to mount PCBs and pulleys respectively:
the turntable stepper motors use a 5 mm diameter shaft alongside pulley (3693N11)
components.

The overall design consists of three major subassemblies.
A “foundation” subassembly provides supporting and leveling, for uneven terrain, and

mounts the Turntable-Controller PCB block in an electrical box. It is built from two frame pieces
(2 foot 47065T101 and 2 foot 47065T107) connected with frame brackets (47065T239). Two
rubber wheels provide easier transport. Leveling is achieved through three 8” adjustable screws
at the extreme ends of the frame pieces: the triangle formation eliminates frustrations
associated with four legs. The foundation subassembly electrical box is cut from clear
polycarbonate for visual debugging.

Fig. 4.6.2.2 - Foundation CAD Render

Atop the foundation is the “tower” subassembly. It is built around a 4 foot McMaster
47065T101 with holes drilled to affix L-channel: these connections are made rigid using
97832A216 shoulder screws which provide tighter tolerances than conventional machine
screws. Each L-channel supports a McMaster 6031K16 turntable through #6-32, limited by the
turntable dimensions, screws. The tower is connected to the foundation by framing brackets: the
use of framing allows extensions to height in the future.

The tower also mounts a 17HS15-1504S stepper motor which drives a 600 tooth belt
(7947K758). To prevent slipping, the belt is tensioned using a 3D printed sliding mechanism and
idler pulley and guided around the tower pole with another idler. Between Turntable and

https://www.mcmaster.com/3693N11/
https://www.mcmaster.com/47065T101-47065T209/
https://www.mcmaster.com/47065T107-47065T213/
https://www.mcmaster.com/47065T239/
https://www.mcmaster.com/47065T101-47065T121/
https://www.mcmaster.com/97832A216/
https://www.mcmaster.com/6031K16/
https://www.mcmaster.com/7947K758/

Turntable-Controller, the 17HS15-1504S motor is what accepts the trntbl-cntrllr_trntbl_acpwr
interface.

Additionally, an encoder board based on the AS5048A is mounted between the top pair
of L-channel. The AS5048A is an absolute encoder which removes the need for zeroing: it will
provide the same output for the same position. It features a SPI interface, 14-bit position value
(AS5048A, pg. 11, SPI Interface), and a generous tolerance in magnet mounting (AS5048A, pg.
32, Fig. 36 and Fig. 37).

To mitigate EMI effects, an SN75C1168N converts the SPI signals into differential pairs:
this is only done to CLK, MISO, and MOSI. This IC is what interfaces between the
Turntable-Controller and encoder board of Turntable.

Mounting of the motor is offset to provide some counter force to the 4 kg primary Ubiquiti
antenna (AM-2G15, page 4, Specifications) attached to the cradle subassembly. However, the
design does allow for all torque and gravity forces to be sustained by the L-channels, turntables,
and shoulder screws.

Fig. 4.6.2.3 - Tower CAD Render

Finally, the “cradle” sub assembly holds the Ubiquiti AM-2G15 antenna between two
aluminum L-channels. The lower strength of PLA is accounted for by using multiple brackets to
distribute stress, providing support to reduce torque forces from the Ubiquity, and adding
stiffening plates to relieve stress.

A passthrough for the Ubiquity Ethernet cable is designed into block parts and passed
through the center of the turntable mechanisms. This also relieves rotational stresses on the
cable and prevents tangles.

The top turntable mechanism is occupied by the magnet needed for the AS5048A
encoder board.

https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://dl.ubnt.com/datasheets/airmaxsector/airMAX_Sector_Antennas_DS.pdf

Fig. 4.6.2.4 - Cradle CAD Render

b) Design Documents
While it is industry standard to provide annotated manufacturing files, it will be easier

and shorter to link to a Google Drive repository containing the parts themselves and annotated
documents [Part Repository].

4.6.3. General Validation
When combining electrical and mechanical systems into one system, negotiating all the

intricacies of both can be very challenging. What might be inconsequential in one could have
major implications in the other. For instance, simply surrounding electronics in a tough plastic
box might cause heat issues if no fans or cooling ports are added or slow down debugging by
requiring removing a lid. On the flip side, an all metal construction is more durable but also
conductive and, potentially, magnetic. Careful planning is needed to reconcile all these facts.

Starting with structure, the use of 6000 series aluminum is clear because it’s lightweight,
rigid, and strong [1]. But, polycarbonate and PLA plastics sacrifice some rigidity and strength for
lower weight. Examining McMaster 8574K192 polycarbonate, it is rated at an impact strength of
2 ftlb/in and 9,100 PSI tensile strength. Unfortunately, the ECE curriculum does not prepare for
mechanical engineering computations nor has the block champion, Angel, taken strength of
materials yet. Thus, previous experience with ⅛” polycarbonate indicates that 8574K192
polycarbonate should be sufficient for loads perpendicular and parallel to the material.

For PLA, the intricacies of 3D printing make any computations difficult: infill percent,
material behavior, temperature, are changed part properties. Like the polycarbonate, experience
has determined PLA to be a cheap and reasonably strong part as long as certain printing
orientations are used.

https://drive.google.com/drive/folders/1PUVB3FfVmmqxvNFr7KyAJ-VUUL1AAN1P?usp=share_link
https://www.mcmaster.com/8574K192/

However, certain design choices are used to reduce stress. For flat polycarbonate parts,
braces are added to provide rigidity. In the turntable mechanisms, two polycarbonate plates are
placed at 90° angles against one another to prevent bending of the lower plate. Additionally, the
size of plates are minimized to both reduce costs and torque, which is proportional to distance,
forces.

For 3D printed parts, their weaker strength is compensated by adding multiple redundant
parts to distribute forces. The same turntable mechanism uses four printed brackets instead of
just two to distribute torque forces in all rotational directions.

Fig. - 4.6.3.1 - Turntable Cross Bracing and Stress Distribution

As for custom components in general, they were deemed possible to manufacture based
on the specifications of available machinery. For polycarbonate components, they were routed
using a FoxAlien Masuter CNC router with a working area of 400 x 380 mm and a linear
accuracy up to 0.001 mm [2]. 3D prints were done on an Ender 3 with a working volume of 220
x 220 x 250 mm and an accuracy of 0.1 mm [3]. Aluminum parts were kindly machined by a
technical school, CTEC of Salem, Oregon, using high accuracy and automated metal mills.

Damage to custom components will be mitigated by providing all necessary design files
and required material stock details. 3D printed components can be printed through the 3D
Printing Club’s print farm. Polycarbonate and aluminum parts will have spares made before
deployment during competition.

For the tower design, a concern was the torque force exerted by the AM-2G15 antenna.
The antenna weighs 4 kg and is cantilevered 114.476 mm, or 0.114 m, out from the tower pole.
This equates to 4.47336 Nm of torque, by T = fd, imparted onto the tower pole and thus into the
connecting brackets. The stepper motors opposite the antenna only provide 0.239 Nm of

counter torque derived from a 0.280 kg motor weight and 0.087 m distance. To counter over 4
Nm of torque, aluminum brackets were used in conjunction with large #¼-20 screws (McMaster
47065T239 and 3136N202). Additionally, to prevent tipping, the Ubiquiti antenna is cantilevered
over the foundation pieces as seen in Figure 5 so any torque force “twists” the foundation down
and not upwards i.e. like when someone leans into a ladder instead of outwards.

Finally, the encoder board is designed to interface between two moving subassemblies:
a physical or optical encoder would’ve limited adjustments due to manufacturing defects and
required tighter tolerances. It also sends data via the SPI protocol and physically transported by
RS422 back to the Turntable-Controller block.

Primarily, the absolute positioning capability is useful because the cradle subassembly
cannot be expected to be in the same position on system power-on nor be perfectly zeroed
during competition. By using absolute positioning, any position can instantly be uniquely
determined without additional setup.

Secondarily, the generous tolerances in magnet mounting (AS5048A, pg. 32, Fig. 36 and
Fig. 37) of ± 0.25 mm linearly 0.5 - 2.5 mm vertically allows operation even with some
manufacturing deviations. Conveniently, the 9049 magnet from Radial Magnet Inc. is a powerful
neodymium magnet with low field deviation of 1% maximum (9049, pg. 1) which allows for
additional deviation as stated in the AS5048A documentation (AS5048A, pg. 32, Magnet
Placement).

Electrically, the AS5048A operates off easily supplied 5 V from the Turntable-Controller
and only draws 15 mA (AS5048A, pg. 8, Operating Conditions). It includes non-inverting Schmitt
Triggers to filter out low voltage noise on the SPI pins which improves reliability in high EMI
environments (AS5048A, pg. 5, Pin Assignments). This is improved with the RS422 differential
protocol implemented by a Texas Instruments SN75C1168: a differential protocol that both
extends the range of SPI and improves EMI tolerance [4].

4.6.4. Interface Validation
Interface: trntbl_trntbl-cntrllr_comm

Messages:
Data: 16-bit
data
package
containing
14-bit angle
data

Received message size is
referenced from AS5048A
SPI interface
characteristics.

- Turntable block AS5048A reports data in
a 16-bit data package (AS5048A, SPI
Read Package, fig. 20, pg. 15).

- Bit 13:0 is the 14-bit data
- Other bits are for control

Other:
RS422
Differential
Logic High
Vmin: +/-2V

This is the positive and
negativeVOH threshold of
the SN75C1168N.

- SN75C1168N reports a minimum required
VOH of 2V inverting (SN75C1168N, Driver
Section, Electrical Characteristics, pg. 6).

Protocol: 4
Wire SPI
(data
protocol)

The AS5048A variant uses
an SPI for commands and
outputs.

- SPI is chosen for control features at the
cost of additional input/output hardware.

- Dedicated input and output
prevents collisions.

https://www.mcmaster.com/47065T239/
https://www.mcmaster.com/3136N202/
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://media.digikey.com/pdf/Data%20Sheets/Radial%20Magnet%20Inc%20PDFs/9049_Dwg.pdf
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

- Chip select allows multiple
peripherals on one SPI network.

Interface: trntbl_trntbl-cntrllr_comm

Messages:
Data: 16-bit
data
package
containing
address and
read/write
command

Received message size is
referenced from AS5048A
SPI interface
characteristics.

- Turntable block AS5048A receives
commands in a 16-bit data package
(AS5048A, SPI Command Package, fig.
19, pg. 14).

- Bit 15 (MSB) is the even parity bit
- Bit 14 is read (1) or write (0)

command.
- Bit 13:0 is the 14-bit address to

read from or write to.

Other:
RS422
Differential
Logic High
Vmin: +/-2V

This is the positive and
negativeVOH threshold of
the SN75C1168N.

- SN75C1168N reports a minimum required
VOH of 2V inverting (SN75C1168N, Driver
Section, Electrical Characteristics, pg. 6).

Protocol: 4
Wire SPI
(data
protocol)

The AS5048A variant uses
an SPI for commands and
outputs.

- SPI is chosen for control features at the
cost of additional input/output hardware.

- Dedicated input and output
prevents collisions.

- Chip select allows multiple
peripherals on one SPI network.

Interface: trntbl-cntrllr_trntbl_acpwr

Inominal:
0.4A (per
stepper
positive
channel)

Turntable motor is rated for
0.4 A per coil.

- Turntable stepper motor 17HS15-1504S
is rated for 1.5 A [6].

- TB6600 can output 5 A of maximum
current (TB6600, Electrical
Characteristics, pg. 27)

Vnominal:
12V (per
stepper
positive
channel)

Turntable motor is rated for
12 V but can accept higher
and lower voltages.

- Turntable stepper motor 17HS15-1504S
has been tested at 24 V. [7].

- Will use operational voltage of 12V and
coil current 0.4A for safe and low heat
operation.

Vmax: 14V Turntable - LRS-50-12 has a maximum output of 13.8
V (LRS-50-12, Specification, pg. 2) which
could be sent 1:1 through the TB6600.

Other: Imax:
1A

Derated value from
17HS15-1504S maximum
of 1.5 A continuous.

- Turntable stepper motor 17HS15-1504S
is rated for 1.5 A [6].

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf

Interface: trntbl-cntrllr_trntbl_dcpwr

Inominal:
21mA

Computed by summing
operational current
requirements of circuits
connected to this interface.

- AS5048A in TSSOP-14 package with max
draw of 15 mA (AS5048A, fig. 8, pg. 7)

- SN75C1168N in DIP-16 with max draw of
6mA for just logic (SN75C1168N,
Electrical Characteristics, pg. 6)

Ipeak:
215mA

Computed by summing
operational current
requirements of circuits
connected to this interface.

- AS5048A in TSSOP-14 package with max
draw of 15 mA (AS5048A, fig. 8, pg. 7)

- SN75C1168N in DIP-16 with max draw of
200mA for logic and output
(SN75C1168N, Absolute Maximum
Ratings, pg. 5)

Vmax: 5.5V Determined from AS5048A
datasheet.

AS5048A reports a maximum of 5.5V to VCC
(AS5048A, Operating Conditions, fig.8, pg
7).

SN75C1168N reports a maximum of 5.5V to
VCC (SN75C1168N, Recommended
Operating Conditions, pg. 5)

Vmin: 4.5V Determined from AS5048A
datasheet.

AS5048A reports a minimum of 4.5V to VCC
(AS5048A, Operating Conditions, fig.8, pg
7).

SN75C1168N reports a minimum of 4.5VCC
(SN75C1168N, Recommended Operating
Conditions, pg. 5)

Vnominal:
5V

Determined from AS5048A
datasheet.

AS5048A accepts a range of 4.5V to 5.5V
(AS5048A, Operating Conditions, fig.8, pg
7).

SN75C1168N accepts a range of 4.5V to
5.5V (SN75C1168N, Recommended
Operating Conditions, pg. 5)

4.6.5. Verification Process
Interface under test: trntbl_trntbl-cntrllr_comm and trntbl-cntrllr_trntbl_comm

Testing Materials:
- Turntable-Controller Block
- AS5048A Encoder Board of Turntable Block
- DC Supply
- Power Leads
- Oscilloscope
- Probe Leads
- Computer with Arduino Serial Monitor
- USB A to USB Micro B

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

1. Connect Computer to Arduino
2. Apply 12 V to block
3. Watch Serial Monitor

a. 1st message will be command to AS5048A in 16-bit string
b. 2nd message will be data received from AS5048A in 16-bit string
c. If messages are displayed and received then 16-bit data package size is verified

4. Attach oscilloscope leads to SPI + and SPI - signals (CLI, MISO, MOSI)
a. If magnitude of voltages are > 2 V then RS422 logic level is verified

5. Attach oscilloscope leads to SPI test points (CLK, MISO, MOSI, ~CSn)
6. Configure oscilloscope to decode SPI

a. 16-bit length
b. Read on rising of clock
c. Inverted CSn

7. Observe decoded data
a. If MOSI is 0x1111111111111111 then this verifies command 16-bit string
b. If MSIO is 16-bit (data varies) then this verifies data 16-bit string
c. If both observed then this also verifies SPI interface in use

Interface under test: trntbl-cntrllr_trntbl_acpwr
Testing Materials:

- Turntable Block
- Turntable-Controller Block
- TB6600 subsystem PCB (separate from Turntable-Controller Block)
- 17HS15-1504S Stepper Motor and Terminal Blocks
- DC Supply
- Multimeter
- Oscilloscope
- Multimeter Leads
- Oscilloscope Leads

1. Connect Turntable 17HS15-1504S motors to Turntable-Controller
2. Set multimeter to current mode
3. Attach multimeter leads between 17HS15-1504S Channel A+ and Turntable-Controller,

TB6600 subsystem J1 connector, Pin 1
a. Use test terminal block as breakout

4. Apply 12 V to Turntable-Controller Block
a. If current on channel is nominally 0.4 A then this verifies nominal channel current

5. Adjust JV1 of Turntable-Controller, TB6600 sub-system
a. Adjust until the current reaches 1.0 A.
b. Allow current to remain steady for 1 minute
c. If current holds at 1.0 A then this verifies maximum channel current

6. Stop 12 V

7. Remove multimeter leads and reattach cabling between Channel A+ and TB6600
sub-system J1.

8. Connect Turntable 17HS15-1504S to spare TB6600 subsystem PCB
9. Connect control cable from spare TB6600 J1 to Turntable-Controller J6
10. Connect spare TB6600 to DC Supply

a. Use the SAME DC Supply as the Turntable-Controller Block
11. Adjust supply to spare TB6600 so oscilloscope indicates 12 V nominally
12. Adjust supply to spare TB6600 so oscilloscope indicates 14 V maximum

a. This verifies nominal and maximum input voltage

Interface under test: trntbl-cntrllr_trntbl_dcpwr
Testing Materials:

- Turntable-Controller Block
- AS5048A Encoder Board of Turntable Block
- DC Supply
- Multimeter
- Multimeter Leads
- Power Leads

1. Attach DC Supply to J1 of AS5048A Encoder Board of Turntable Block
2. Apply 12 V to Turntable-Controller
3. Apply 5 V to AS5048A Encoder Board

a. Verify that SPI data is being sent and received
b. Verify that current draw is nominally 21 mA and below 210 mA
c. If so, this verifies nominal operation at 5 V and 21 mA

4. Apply 4.5 V and 5.5 V to AS5048A
a. Verify that SPI data is being sent and received
b. Verify that current draw is below 210 mA
c. If so, this verifies operation within specified supply voltage range

4.6.6. References and Files Links
4.6.6.1. References

[1] MatWeb, “Overview of materials for 6000 Series Aluminum Alloy”, matweb.com, [Online].
Available:
https://www.matweb.com/search/datasheet.aspx?MatGUID=26d19f2d20654a489aefc0d9c247c
ebf&ckck=1 [Accessed: Mar. 14, 2023]
[2] Creality, “Ender-3 Pro”, creality.com, [Online]. Available:
https://www.creality.com/products/ender-3-pro-3d-printer [Accessed: Mar. 14, 2023]
[3] FoxAlien, “CNC Router Machine Masuter”, foxalien.com, [Online]. Available:
https://www.foxalien.com/collections/cnc-router/products/cnc-router-machine-masuter
[Accessed: Mar. 14, 2023]

https://www.matweb.com/search/datasheet.aspx?MatGUID=26d19f2d20654a489aefc0d9c247cebf&ckck=1
https://www.matweb.com/search/datasheet.aspx?MatGUID=26d19f2d20654a489aefc0d9c247cebf&ckck=1
https://www.creality.com/products/ender-3-pro-3d-printer
https://www.foxalien.com/collections/cnc-router/products/cnc-router-machine-masuter

[4] T Kugelstadt, “Extending the SPI bus for long-distance communication,” ti.com, [Online],
Available: https://www.ti.com/lit/an/slyt441/slyt441.pdf [Accessed: Feb. 11, 2023]
[6] Stepperonline, “Nema 17 Bipolar 42Ncm(59.49oz.in) 1.5A 42x42x39mm 4 Wires w/ 1m
Cable & Connector,” omc-stepperonline.com, [Online]. Available:
https://www.omc-stepperonline.com/nema-17-bipolar-42ncm-59-49oz-in-1-5a-42x42x39mm-4-wi
res-w-1m-cable-connector-17hs15-1504s [Accessed: Jan. 31, 2023]
[7] Stepperonline, “1403/17HS15-1504S_Torque_Curve,”omc-stepperonline.com, [Online].
Available:
https://www.omc-stepperonline.com/index.php?route=product/product/get_file&file=1403/17HS1
5-1504S_Torque_Curve.pdf [Accessed: Jan. 31, 2023]

4.6.6.2. Files Links
1) AS5048A Datasheet:

https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
2) SN75C1168 Datasheet:

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F
%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

4.6.7. Revision Table
Author Date Description

Angel Huang 3/13/23 Initial section creation

Angel Huang 3/14/23 Fixed copy-paste and formatting
issues
Added references and file links

Kira Kopcho 5/14/23 Format revision table to follow
style of the rest of the document,
changed font from Times New
Roman to Arial

4.7. User Interface
4.7.1. Description

The purpose of the user interface is to provide visualization of the data sent and
received by the tracking algorithm as well as provide a method of manually controlling the
rotation of the turntable if needed.

Both the rover and base station are equipped with GPS modules that send geographic
coordinates via USB to the hardware the UI runs on. The idea is that these reported coordinates
can then be displayed on the UI so the end user can observe where both the base and the rover
are located at all times. At minimum, these coordinates should be updated every 5 seconds to
ensure that the data that’s being sent to the user is as accurate as possible. In addition the
bearing angle calculated by the tracking algorithm is also displayed on the UI. This allows the

https://www.ti.com/lit/an/slyt441/slyt441.pdf
https://www.omc-stepperonline.com/nema-17-bipolar-42ncm-59-49oz-in-1-5a-42x42x39mm-4-wires-w-1m-cable-connector-17hs15-1504s
https://www.omc-stepperonline.com/nema-17-bipolar-42ncm-59-49oz-in-1-5a-42x42x39mm-4-wires-w-1m-cable-connector-17hs15-1504s
https://www.omc-stepperonline.com/index.php?route=product/product/get_file&file=1403/17HS15-1504S_Torque_Curve.pdf
https://www.omc-stepperonline.com/index.php?route=product/product/get_file&file=1403/17HS15-1504S_Torque_Curve.pdf
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

user to verify the output of the tracking algorithm that is being sent via serial to the turntable
module. This angle should update at a minimum rate of 1 update every 5 seconds as well.

The UI also provides the end user with a way to send manually defined angles to the
turntable. This is meant as a failsafe in case the tracking algorithm is not properly operating.
This is important because the rules of the competition the rover compete in prohibit team
members from directly interacting with the rover or its communications equipment while
competition tasks are underway. By including an interface for manually controlling the angle of
rotation of the turntable, the end user can tweak the positioning of the turntable without having
to manually interact with it.

4.7.2. Design
The user interface is the main way end users can get information about the positioning of

the rover, as well as interact with the turntable module. The UI itself was created using the Qt
Framework- a cross platform software development library that has bindings in Python and C++.
The current UI for the entire rover is written using the Python bindings for Qt, so our project also
uses Python to ensure that our UI can later be added into the rover UI as a whole.

The UI has two inputs, one is the bearing angle determined by the tracking algorithm
(trckng_lgrthm_u_data) and the other is a user defined angle for manually controlling the
turntable (otsd_u_usrin). The user defined input includes text from a text box and a button click
to actually send the angle across serial to the turntable module. Since the tracking algorithm
and the UI run on the same piece of hardware, both python instances can communicate with
each other.

The UI also provides two outputs. The first is a data output to show the end user data
about what is being received by the tracking algorithm (u_otsd_usrout). Text displays on the UI
dynamically update to show both the geographic position of the rover, the base station, and the
updated bearing angle from the tracking algorithm. These interfaces update about once per
event cycle, which is about once per second unless the NUC is under heavy processing load.
The second output from the tracking algorithm is the serial output to the turntable module for
manually setting the angle. Qt provides a serial interface so the UI is able to write messages
across the serial link to the controller with UART specifications. Pictured below is a black box
diagram that shows the inputs and outputs associated with the UI. For a full diagram of how the
tracking subsystems works, see section 4.1.2.

Fig. 4.7.2.1 - Block Diagram

4.7.3. General Validation
The user interface is part of the larger tracking subsystem. Like the tracking algorithm, it

runs on the intel NUC 11 that runs the larger rover UI. For verification purposes, a smaller UI
widget was created, but eventually, this UI block will be merged into the larger rover UI. As a
result, many design decisions for this block are influenced by maintaining compatibility with the
larger rover UI.

The UI itself was written using the Qt framework with Python bindings. Qt is a
cross-platform development tool primarily used to create graphical user interfaces. Natively, Qt
is written in C++, but there is a library with python bindings known as PyQt which shares most of
the same functionality as the original C++ version [1][2]. PyQt is what the current user interface
for the rover is made with, so to maintain compatibility the user interface for the tracking
subsystem is made with PyQt as well. Other Python libraries do exist for creating graphical user
interfaces (such as Tkinter), but to ensure compatibility with the existing codebase PyQt is used.

The main goal of the user interface for the tracking subsystem is to provide feedback to
the end user about the tracking subsystem. In short, the end user should see the inputs and
outputs of the tracking algorithm on the user interface. There are three key pieces of information
associated with the tracking algorithm: The coordinates received from the rover GPS, the
coordinates of the base station GPS, and the bearing angle produced from the tracking
algorithm. Originally, the coordinates from the base station were not planned to be included in
the UI since the base GPS is not mobile. However, since the UI can also be used as a
diagnostic tool for the tracking algorithm, the base coordinates are included in the updates the
UI receives. The rover coordinates and bearing angle change state more frequently than the
base coordinates, so it is important to include them to show their updates in real time.

The code for the user interface consists of 3 files: the ui XML file generated by Qt
Designer, the Tracking Coordinator, and the UI script itself. Qt Designer is a tool for creating GUI

using Qt Widgets [3]. Instead of writing the Qt Widgets from scratch, the tool allows the
developer to simply drag and drop the desired widgets into an interface and set their properties.
When the developer saves their work, an XML script is compiled that includes the information of
each of the widgets. The named widgets in the XML file are the same variables that are used by
both the UI script and the Tracking Coordinator. Qt Designer was chosen to cut down on the
programming time for the GUI. Since the UI script and the Tracking Coordinator are both more
involved pieces of code, setting the layout and properties of each Qt Widget in the designer was
much quicker than writing a Python or C++ implementation of each widget. When the UI is
eventually absorbed into the larger rover UI, the widgets in this XML file will be added to a larger
XML file for the entier rover UI.

The actual pieces of code that run the UI are the Tracking Coordinator and the UI script.
The Tracking Coordinator handles receiving input from the tracking algorithm. Since the tracking
algorithm sends updates to the the UI frequently, the functions responsible for triggering the UI
update must be run in a separate thread from the main UI window. If these updates are run in
the main UI script, the UI will freeze until each update is completed [4]. This unfortunately adds
a bit more processing overhead to the UI, but to avoid freezing the cost is minimal. Threading
the tracking UI will also prevent it from freezing the entire rover UI when it is merged in. To
actually receive values from the tracking algorithm, the Tracking Coordinator utilizes a python
listener. Essentially, the UI opens a socket that the tracking algorithm can send its data across
[5]. The tracking coordinator keeps track of the latitude/longitude values for the base and rover
and the bearing angle. These are updated each time a message is received on the listener.

The main UI script is links the updates produced by the tracking coordinator to the
widgets specified in the UI XML file. In short, it actually generates the visible UI window. It
provides the code responsible for allowing users to interact with the manual control features of
the UI as well as defines the Qt Widgets that the Tracking Coordinator sends updates to. In
short, it is the main piece of code that ties all separate UI functions together. When our user
interface is eventually absorbed into the larger rover UI, the main UI script will be called from a
higher python instance that runs the entier rover UI. For now, it produces a standalone window
for verification purposes.

4.7.4. Interface Validation
The UI serves as the link between the internals of the tracking subsystem and the end

user. Since it is an important diagnostic tool and source of information for the end user, it is of
the utmost importance that it works properly. The following table lists interfaces that aid in
proving the UI works as intended. The table lists what each interface is, how it relates to the
block and the system around it, and why the design meets the property of each interface.

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each

property?

otsd_u_usrin : Input

Other: Manually
defined angle is
only sent when
user presses
"send" button

In order to prevent the manual
angle sending from blocking output
from the tracking algorithm by
continuously sending angles, the
user input has the requirement that
angles should only be sent from the
UI when the user requests them to
be sent via a button click

The Qt framework only triggers a
serial write to the turntable when
the flag indicating the “send angle”
button has been pressed is set.

Type: Button
Click

This interface value exists to avoid
the accidental sending of angles
from the UI to the turntable
controller.

Qt provides bindings for buttons
within the UI. Button clicks set
certain flags in the code and when
those flags are set they can be
used to trigger other
events/functions in the main UI
loop.

Type: Text-
Angle: 0.0-360.0

Just like the output of the tracking
algorithm, the turntable controller is
only set up to accept angles that
are between 0-360 degrees

Within the UI code, the option to
click the “send angle” button is not
available until the code checks that
the angle input by the user is
between “0.0” and “360.0”

u_otsd_usrout : Output

Type: Numbers -
Base Station
Coordinates

The coordinates for the base
station are floating point numbers.
The UI reports these numbers as
they are updated, with 1 decimal
point of precision.

Labels (textboxes) in QT can be
dynamically updated when new
information is received. They can
also store both numerical and text
string values. In this case,
numerical values are used.

Type: Numbers -
Angle (in
degrees)

The bearing angle reported by the
tracking algorithm is a floating point
value between 0-360 degrees. This
angle is sent to both the turntable
and the UI.

Labels (textboxes) in QT can be
dynamically updated when new
information is received. They can
also store both numerical and text
string values. In this case,
numerical values are used.

Type: Numbers -
Rover
Coordinates

The coordinates for the rover
station are floating point numbers.
The UI reports these numbers as
they are updated, with 1 decimal
point of precision.

Labels (textboxes) in QT can be
dynamically updated when new
information is received. They can
also store both numerical and text
string values. In this case,
numerical values are used.

u_trntbl-cntrllr_data : Output

Datarate: 1
message per
click

The angle should only be sent to
the turntable when the button is
clicked. Additionally, it is not ideal to
send duplicate angles, so the
messages should be limited to
once per click

When a button is clicked in Qt it
sets a flag that is checked and
cleared once per UI event loop. So
only one angle is sent per button
click.

Messages:
Angle: Must be
from 0.0 - 360.0
degrees

The turntable module only accepts
values between 0 and 360 so the
output from the UI must meet this
specification

The text entered by the user is
checked within the UI to ensure it is
between 0.0 and 360.0. The option
to click the “send angle” button is
unavailable until a valid angle is
entered

Protocol: UART
Serial (9600
Baud)

The arduino on the turntable
controller is configured to accept
UART serial messages so the data
being sent from the UI must match
UART specifications (8 data bits,
9600 baud, and 1 stop bit).

The Qt framework provides a serial
library that can be configured to
meet different serial standards. The
serial output from the UI is
configured to meet UART
specifications.

trckng_lgrthm_u_data : Input

Datarate: Rate
Min: Updates
once every 5
seconds

The tracking algorithm has a
minimum update rate of 1 message
every 5 seconds so the UI should
also have a minimum update rate of
one message every 5 seconds.

When the UI threads are running
under normal load conditions it
updates at the same frequency as
the tracking algorithm.

Datarate: Rate
max: Updates
once per second

The tracking algorithm has a
maximum update rate of 1
message every second so the UI
should also have a maximum
update rate of one message every
second.

When the UI threads are running
under normal load conditions it
updates at the same frequency as
the tracking algorithm.

Messages:
Angle: 0.0-360.0
degrees

The tracking algorithm returns an
angle between 0-360 on success
and a -1 when an error occurs. If
the UI reads a -1 from the tracking
algorithm, that indicates an error.

The UI is setup to read the bearing
angle output directly from the
tracking algorithm.

4.7.5. Verification Process
The verification plan below is meant to prove the functionality of the user interface before

it is combined with the larger tracking subsystem. The main purpose of the verification plan
below is to ensure that the UI module can update at a reasonable rate when presented with new
data. To test this, there is a function included in the UI code that generates random numbers for
coordinates and the bearing angle. This can be seen in the file links below. Verification also
requires a USB-serial cable to verify data is actually being sent from the UI. The following
verification plan aims to be simple so users not familiar with the UI can quickly verify the
operation of the block. It is split into two sections: verification of manual angle sending and
verification of update rates.

Verification of Manual Angle Control:

1. Attach the USB-serial output cable to the NUC and connect the TX (orange) line to an
oscilloscope

2. Place the oscilloscope in “single-run/single-shot” mode
3. Start the python UI script
4. Enter a value between “0.0” and “360.0” in the textbox. The “.0” is required for the value

to be valid
5. Click away from the textbox. The “send angle” button should become active
6. Click the send angle button
7. Adjust the zoom on the oscilloscope to see the pulsed waveform clearly.
8. Set cursors to the beginning and end of 1 square wave pulse.
9. Calculate the baud rate by using 1/T where T is the elapsed time between the start and

the end of the pulse
10. Read off the 8 data bit pulses (minus the first logic high start bit) to determine the binary

data sent across the serial. The least significant bit is the first pulse and the most
significant bit is the last pulse

11. Convert the 8 data bits to an ASCII value using a binary to ASCII table
12. Validate that the ASCII value matches the value printed in the UI terminal
13. Validate that the ASCII value matches the angle value by using a Text to ASCII converter
14. Type in a negative value to the textbox and verify that the “send angle” button remains

greyed out
15. Type in a value over 360.0 and verify that the “send angle” button remains greyed out

Verifcation of UI update rates:
1. Start the UI

2. Wait for the UI to start updating the angle/coordinate values
3. Keep time with the system clock to verify that the update rate of the UI is within 5

seconds
4. Valid numbers for angle is between “0.0” and “360.0”. The bearing angle will be

displayed as -1 if it is not updating correctly/a value is received in error
5. The base and rover coordinates will also display -1 if not updating properly.

4.7.6. References and Files Links
4.7.6.1. References

[1] “About Qt.” Qt Wiki. [Online] Available: https://wiki.qt.io/About_Qt [Accessed Mar. 13, 2023]
[2] “Qt for Python.” doc.qt.io. [Online] Available: https://doc.qt.io/qtforpython/index.html
[Accessed Mar. 13, 2023]
[3] “Qt Designer Manual.” doc.qt.io [Online] Available: https://doc.qt.io/qtforpython/index.html
[Accessed Mar. 14, 2023]
[4] L.P Ramos. “Use PyQt's QThread to Prevent Freezing GUIs.” Real Python. [Online]
Available: https://realpython.com/python-pyqt-qthread/ [Accessed Mar. 14, 2023]
[5] “Multiprocessing - Process Based Parallelism: Listeners and Clients.” docs.python.org
[Online] Available:
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.connection
[Accessed Mar. 14, 2023]

4.7.6.2. Files Links
1) Full UI Code

4.7.7. Revision Table

Author Date Description

Kira Kopcho 2/28/23 Added Verification Steps

Kira Kopcho 3/12/23 Revised description section to
better describe the purpose and
functionality of the user interface

Kira Kopcho 3/12/23 Added short description of
design for the UI and how it
communicates with other blocks.

Kira Kopcho 3/12/23 Filled out interface validation
table

Kira Kopcho 3/14/23 Added existing sections to full
project document

Kira Kopcho 3/14/23 Finished general verification
section

https://wiki.qt.io/About_Qt
https://doc.qt.io/qtforpython/index.html
https://doc.qt.io/qtforpython/index.html
https://realpython.com/python-pyqt-qthread/
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.connection
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/tree/main/UI

Kira Kopcho 3/14/23 Added references section and
link to full UI code

Kira Kopcho 5/14/23 Format revision table to match
the style of the rest of the
document

4.8. RX Code
4.8.1. Description

Code that receives condensed GPS data sent, via the LoRa modem, from the rover’s
transmitter and passes that data to the ground station, via the transceiver’s USB port, to be
processed by the tracking algorithm.

4.8.2. Design

General Code Outline:

a) Check if the LoRa modem is starting up and ready to receive transmitted data
b) Print LoRa modem status

c) Receive LoRa packet if modem is operational
d) Parse LoRa packet
e) Check that packet has a size greater than zero
f) Check that there is no erroneous data received within the packet
g) If there is no erroneous data, export data to the USB port at a maximum rate of one

packet of longitude, latitude, and UTC time data per second

Main Code and Valid Check Function:
void print_if_valid(const char *str) {

int len = strlen(str);

int i;

int has_extra_character = 0;

for (i = 0; i < len; i++) {

if (str[i] != '0' && str[i] != '1' && str[i] != '2' && str[i] != '3' &&
str[i] != '4' && str[i] != '5' && str[i] != '6' && str[i] != '7' && str[i] !=
'8' && str[i] != '9' && str[i] != ',' && str[i] != ':' && str[i] != '-' &&
str[i] != '.' && str[i] != 'U' && str[i] != 'T' && str[i] != 'C') {

has_extra_character += 1;

}

}

if (!has_extra_character) {

printf("%s\n", str);

}

has_extra_character = 0;

}

int main(){

stdio_init_all();

if (!LoRa.begin(915E6)){

printf("Starting LoRa failed!\n");

while(1){

printf("Failed!\n");

}

}

printf("LoRa Started\n");

LoRa.receive();

int counter=0;

while(1){

int packetSize = LoRa.parsePacket();

if(packetSize > 0){

string message = "";

while(LoRa.available()){

message += (char)LoRa.read();

}

print_if_valid(message.c_str());

}

return 1;

}

4.8.3. General Validation
The code that will be uploaded to the RP2040 microcontroller chip will be written in the

C++ programming language for purposes of familiarity amongst the relevant members of the
group and to utilize the limited resources available to the fullest.

Outputting the code via the USB port allows for the transceiver to simply be plugged into
the rover ground station.

The exporting at a maximum rate of one packet of information per second facilitates
ample tracking resolution with the antenna while also saving memory resources on the RP2040
microcontroller

4.8.4. Interface Validation
The receiver code is the link between the receiver hardware and the tracking algorithm,

via the base station, and is tasked with controlling the receiving transceiver hardware and
printing the valid received data to the tracking algorithm.

Interface
Property Why is this interface this value?

Why do you know that your
design details for this block
above meet or exceed each

property?
rx_cd_trckng_lgrthm_data : Output

Datarate: Rate
Min: 1 message
per 5 seconds

An update rate of once per 5 seconds is
the minimum rate which still allows the
antenna module to track the rover. This
minimum padding to account for the
possibility of lost or incomplete packets.

The runtime for the code is less
than a second, which exceeds the
minimum requirement of
processing and transmitting the
LoRa packet within 5 seconds.

Datarate: Rate
Max: 1 message
per second

One message per second was determined
to provide ample time for the tracking of
the rover via the rotating antenna.

The runtime for the code is less
than a second, which allows for
the printing of the received

packets at a rate of once per
second.

Messages:
Latitude,
Longitude, UTC
Time

This data is required for determining the
position of the rover.

The RX code does not edit this
information, it only handles the
receipt and printing of this data.
This message is received and
confirmed to not contain
erroneous data via the
print_if_valid() function.

Protocol: USB
A USB connection is used between the
Receiver and the tracking algorithm
running on the base station.

The USB output is enabled in the
makefile for the code along with
the .h file.

rcvr_hrdwr_rx_cd_data : Input
Datarate: 12KHz
from onboard
clock

The 12KHz clock is used to facilitate the
SPI communication.

It is specified in the RP2040 and
LoRa modem datasheets

Messages: GPS
position and time
data

This data is required for determining the
position of the rover.

The RX code does not edit this
information, it only handles the
receipt and printing of this data.
This message is received and
confirmed to not contain
erroneous data via the
print_if_valid() function.

Protocol: SPI
An SPI connection is used to communicate
between the RP2040 Microcontroller and
the LoRa modem.

The SPI communication is
enabled in the makefile for the
code along with the .h file.

4.8.5. Verification Process
The purpose of the verification below is to prove the receiver code is capable of communicating
with the receiver hardware to receive packets via the LoRa modem and print out the received
packets as long as the packets received do not contain erroneous data.

1. Confirm the LoRa modem starts up via a printed message viewed on the terminal of the
computer the receiver is plugged into.

2. Confirm no erroneous packets are being printed by viewing the printout on the terminal.
3. Confirm the output of longitude, latitude, and time data packets at a rate of once per

second via a terminal on a computer plugged into the transceiver’s USB port.
4. Verify the latitude and longitude being received are accurate values by plugging them

into google maps.

4.8.6. References and Files Links
4.8.6.1. References

[1] Semtech, “SX1276/77/78/79 Datasheet,” [Online] Available:
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF
_Fkpgp5kzjiNyiAbqcpqh9qSjE [Accessed: 11-Feb-2023].
[2] Raspberry Pi, “RP2040 Datasheet - A Microcontroller by Raspberry Pi” [Online] Available:
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf [Accessed: 11-Feb-2023].

4.8.6.2. Files Links
1) Receiver Code
2) Receiver CMakeLists
3) Receiver CMake File
4) Receiver LoRa.h
5) Receiver LoRa.cpp
6) Receiver Print.h
7) Receiver Print.cpp

4.8.7. Revision Table

Author Date Description

Austin Grubowski 1/12/23 Created Block Validation
document

Austin Grubowski 1/20/23 Updated interfaces, filled in all
remaining sections

Austin Grubowski 3/14/23 Updated interfaces, references,
file attachments, and added
code

Kira Kopcho 5/14/23 Format revision table to follow
style of the rest of the document

4.9. TX Code
4.9.1. Description

Code written in C++ that processes GPS information from the Rover GPS and sends it to
the LoRa modem. It combines with the Rover GPS block to format and package the GPS data
into LoRa packets with a specified format for parsing on the receiver.

https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://drive.google.com/file/d/1DGDJGhgGxPoLZCKzkVGwpo5AFW8kS-nG/view?usp=sharing
https://drive.google.com/file/d/1Ah0BCqrQd3v2QfV8YBtBraRlB3RfE6TV/view?usp=sharing
https://drive.google.com/file/d/1HksnLogDHZxTHJ_7zE_J2TlCSrPDUSYO/view?usp=sharing
https://drive.google.com/file/d/1yR-YXFBH2KXLO9g4hBhGhy65XfYY5vN4/view?usp=sharing
https://drive.google.com/file/d/1DcJsCEDySoyNGLJYjnMaG6eEvOo7zAxu/view?usp=sharing
https://drive.google.com/file/d/1le-lDsvIk0i68eBVy3d64vierDe4t5WC/view?usp=sharing
https://drive.google.com/file/d/1tZAurQnRsHmb4oo6_pI3veBBn7MvgOmA/view?usp=sharing

4.9.2. Design

Fig. 4.9.2.1 - Black Box Diagram of TX Code block

4.9.3. General Validation
In order to verify that this block works an input of a formatted string in the following

format: “Latitude, Longitude, Timestamp, Packet Number” will be sent to the block. The result
must be bit sequences over the SPI interface to the transmitter hardware. This can be verified
using an oscilloscope on the SPI line that is connecting the RP2040 to the LoRa module on the
transmitter.

4.9.4. Interface Validation
The transmitter code is the link between the transmitter hardware and the incoming GPS

data, and is tasked with converting the GPS string into bit sequences on the transmitter
hardware.

Interface
Property Why is this interface this value?

Why do you know that your
design details for this block
above meet or exceed each

property?
rvr_gos_tx_cd : input

Datarate: Rate
Min: 1 message
per 5 seconds

An update rate of once per 5 seconds is
the minimum rate which still allows the
antenna module to track the rover. This
minimum padding to account for the
possibility of lost or incomplete packets.

The runtime for the code is less
than a second, which exceeds the
minimum requirement of
processing and transmitting the
LoRa packet within 5 seconds.

Datarate: Rate
Max: 1 message
per second

One message per second was determined
to provide ample time for the tracking of
the rover via the rotating antenna.

The runtime for the code is less
than a second, which allows for
the printing of the received
packets at a rate of once per
second.

Messages:
Latitude,
Longitude, UTC
Time

This data is required for determining the
position of the rover.

The TX code does not edit this
information, it only converts this
information into bits on the SPI
bus.

tx_cd_trnsmttr_hrdwr : Output
Datarate: 12KHz
from onboard
clock

The 12KHz clock is used to facilitate SPI
communication.

It is specified in the RP2040
datasheet.

Messages: GPS
position and time
data

This data is required for determining the
position of the rover.

The TX code does not edit this
information, it only converts this
information into bits on the SPI
bus.

Protocol: SPI
An SPI connection is used to communicate
between the RP2040 Microcontroller and
the LoRa modem.

The SPI communication is
enabled in the makefile for the
code along with the .h file.

4.9.5. Verification Process
The purpose of the verification below is to prove the transmitter code is capable of

communicating with the transmitter hardware to send packets via the LoRa modem and print out
the received packets as long as the packets received do not contain erroneous data.

1. Power on the transmitter via USB to a computer and wait until the GPS module gets a
satellite fix indicated by a solid red light on the GPS module.

2. Using PuTTY or another serial port listener, observe if any data is being printed to the
terminal.

3. Confirm the output of longitude, latitude, and time data packets at a rate of once per
second via a terminal on a computer plugged into the transceiver’s USB port.

4. Connect an oscilloscope to the SPI MOSI terminal of the LoRa module on the transmitter
and see if data is coming in with the proper frequency (12KHz).

5. Verify the latitude and longitude being received are accurate values by plugging them
into google maps.

4.9.6. References and Files Links
4.9.6.1. References

[1] Semtech, “SX1276/77/78/79 Datasheet,” [Online] Available:
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF
_Fkpgp5kzjiNyiAbqcpqh9qSjE [Accessed: 11-Feb-2023].
[2] Raspberry Pi, “RP2040 Datasheet - A Microcontroller by Raspberry Pi” [Online] Available:
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf [Accessed: 11-Feb-2023].

4.9.6.2. Files Links
1) Transmitter Code Github

4.9.7. Revision Table
Author Date Description

Sean Bullis 5/4/23 Section Creation and Content
Added

https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/bulliss93/Rover_RDF_Capstone/tree/main/Transmitter_code

5. System Verification Evidence
5.1. Universal Constraints

5.1.1. The system may not include a breadboard
The system, as shown below, does not have a breadboard. All electrical circuits are

either in off-the-shelf systems or assembled onto custom made PCBs.

Fig. 5.1.1.1 - Controller Boards
Encoder (Top Left), Stepper Driver (Middle, Right), Arduino Carrier (Middle)

Fig. 5.1.1.2 - Universal Transceiver Board

5.1.2. The final system must contain a student designed PCB.
The system contains multiple student designed PCB’s for the transmitter and receiver

combination and for the turntable controller.

Figure 5.1.2.1 shows the PCB design from KiCad for the transceiver which depending on
the hardware can be operated as a transmitter or receiver. Figure 5.1.2.2 and Figure 5.1.2.3
show the physical PCB in its transmitter configuration and its receiver configuration respectively.
According to KiCad, the tool the transceiver was designed in, there are 189 pads on the PCB.

Fig. 5.1.2.1 - Transceiver PCB Design

Fig. 5.1.2.2 - Transceiver implemented as a transmitter

Fig. 5.1.2.3 - Transceiver implemented as a receiver

5.1.3. All connections to PCBs must use connectors
The PCB for the transceiver has four connections, two of which are JST connectors and

two of which are male pin headers. One JST connector connects a breakout USB cable to the
PCB and the other JST connector connects the external battery. One of the male pin header
connections acts as a bridge to the switch on the enclosure that sets whether or not the battery
is on, and the other set connects to the LED on the enclosure to indicate that the battery is
running. There are no connectors that are directly soldered or otherwise not using connectors
on the transceiver PCB.

Fig. 5.1.3.1 - Transmitter PCB showing 7 connectors.

From left to right there is a USB cable connected via JST. There are 3 two-pin header
connectors for connections to enclosure devices. There is a IPEX antenna mount for the GPS
module. There is a 3 pin header to connect to a switch on the enclosure to control the boot-state
of the microcontroller. There is an SMA connector to a high gain Molex antenna.

Fig. 5.1.3.2 - Controller Connections

Similarly, the controller hardware uses a mixture of JST XH series connections and
Molex Mini-Fit JR for all connections. Below is an image of the wiring used and connectors are
clear between cable and boards.

Fig. 5.1.3.3 - Control Box Wiring

5.1.4. All power supplies in the system must be at least 65%
efficient.

For the Turntable-Controller block, it is supplied 12 V from an LRS-50-12 AC to DC
converter that is quoted from the datasheet to be 86% efficient. For the block PCBs, 9 V is
generated by an STMicroelectronics LS7809 linear regulator. To compute efficiency, 9/12 is
simply 75%. But, generating 5 V using a linear regulator would be too inefficient so a switching
regulator based on the Texas Instruments LMR51420YDDCR is used.

Consulting the chart below, it is known that at least 0.05 A will be drawn during normal
operation: 0.05 A is the current drawn by the Turntable block encoder system. Since other
systems such as motor control pins, timers, and LEDs will be running, it is likely that nominal
current draw on 5 V will exceed 0.05 A.

Fig. 5.1.4.1 - LMR51420YDDCR Efficiency Versus Load

Using > 0.05 A of load alongside a 12 V input and an 1.1 MHz FPWM version of the
LMR51420YDDCR, the efficiency is at least 70% which fulfills the 65% minimum.

For the transmitter the input USB voltage is 5V and the system voltage is 3.3V using a
linear voltage regulator which maintains a 3.3V output. The output to input ratio is 3.3:5 which is
66%. This fulfills the 65% minimum requirement.

It is worth noting that the battery system is not 65% efficient as the boost converter has
an efficiency of approximately 93% at 100mA current draw, as shown in Figure 5.1.4.2, from
3.7V to 5V volts and then another 66% efficiency from 5V down to 3.3V which results in 61%
efficiency for the battery system. This was approved because the battery is not intended to
provide main power for the transmitter and is only present as a backup system in the case of
rover failure.

https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf

Fig. 5.1.4.2 - Efficiency of the TPS61322 boost converter pulled from the datasheet. With an
input voltage of 3.6V drawing 100mA of current the efficiency is approximately 93%.

5.1.5. The system may be no more than 50% built from purchased
'modules.'

Production materials and their sources are detailed below:

Block Built or Purchased Comments

Receiver Hardware Built Uses two purchased
sub-modules, the LoRa module
and the GPS module. Due to the
non-trivial nature of
incorporating these into the
custom microcontroller system
built onto the PCB this is
considered built but with half
purchased components.

Transmitter Hardware Built Uses two purchased
sub-modules, the LoRa module
and the GPS module. Due to the
non-trivial nature of

https://www.ti.com/lit/ds/symlink/tps61322.pdf?ts=1683193843956&ref_url=https%253A%252F%252Fwww.google.com%252F

incorporating these into the
custom microcontroller system
built onto the PCB this is
considered built but with half
purchased components.

TX Code Built Coded by integrating open
source libraries but developed
independently.

Rover GPS Built Custom embedded C code.

RX Code Built Custom embedded C code.

Enclosure Built Custom 3D printed enclosure.

Turntable Controller Built Custom PCB fabricated by
OshPark.
Components are off-the-shelf but
assembled thus considering
them “built”.

Turntable Built Aluminum stock was purchased
from McMaster and fabricated
into components.
Plastic components either 3D
printed or CNC routed from
McMaster purchased stock.
Additional wire harnesses are
custom made.

Tracking Algorithm Built Custom Python code.

UI Built Custom Python code.

Table 5.1.5.1 - Component Usage Breakdown

5.2. Requirements
5.2.1. System Accuracy

5.2.1.1. Project Partner Requirement
The system's tracking performance is accurate

5.2.1.2. Engineering Requirement
The system primary antenna sub-system will have a rotation mechanism that shall be accurate
to <45° when the rover is 65 meters away.

5.2.1.3. Testing Method
By Inspection.

5.2.1.4. Verification Process
Materials

- OSURC Rover (if available)
- OSURC Groundstation
- System
- > 65 m tape measure
- Protractor

1. Power on system, groundstation: perform setup actions
2. Move the Rover or Rover mounted GPS unit to >= 65 m away from groundstation GPS
3. Move the Rover or Rover mounted GPS unit left or right
4. If possible, move the GPS unit in a circle around the groundstation
5. Visually inspect the tracking alignment
6. Compute the actual angle using reported GPS coordinates
7. Measure the turntable heading using a protractor
8. Compute error (if any)

5.2.1.5. Pass Condition
System never exceeds 45 degrees of error at 65 m of distance.

5.2.1.6. Testing Evidence
1) System Accuracy Evidence:

https://drive.google.com/drive/folders/1MT-oWe74SUMO_BPuBn3LY3fwDfsNVtF4?usp=
sharing

5.2.2. System Tracking Speed
5.2.2.1. Project Partner Requirement

The system is fast and comprehensive.

5.2.2.2. Engineering Requirement
The system will rotate the primary antenna using the turntable sub-system at a minimum
angular velocity of 5°/s.

5.2.2.3. Testing Method
By Test.

5.2.2.4. Verification Process
Materials

- System
- OSURC Rover Ground Station
- Timer

1. Turn on system power
2. Wait for system to align to 0°

https://drive.google.com/drive/folders/1MT-oWe74SUMO_BPuBn3LY3fwDfsNVtF4?usp=sharing
https://drive.google.com/drive/folders/1MT-oWe74SUMO_BPuBn3LY3fwDfsNVtF4?usp=sharing

3. Turn on OSURC Rover Ground Station and launch control Python scripts
4. Manually command the turntable to 181.0°: antenna will rotate left -179.0° +/- 5°
5. Set timer to 00:00
6. Manually command the turntable to 179.0° AND start timer: antenna will rotate right

+179° +/- 5°
7. Stop timer when antenna stops: the rotation mechanism will have traveled at least 348°

(-179° + 5° --> zero --> 5° - 179.0°)
8. Divide 348° by time to computer angular velocity

5.2.2.5. Pass Condition
Calculated angular velocity of greater than 5 °/s.

5.2.2.6. Testing Evidence
1) System Tracking Speed Evidence:

https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sha
ring

5.2.3. System Field of View
5.2.3.1. Project Partner Requirement

Tracking is fast and comprehensive.

5.2.3.2. Engineering Requirement
The system will rotate the primary antenna using the turntable sub-system in an angle range of
0° - 360°.

5.2.3.3. Testing Method
By Inspection.

5.2.3.4. Verification Process
Materials

- System
- OSURC Rover Ground Station

1. Turn on system power
2. Wait for system to align to 0°
3. Turn on OSURC Rover Ground Station and launch control Python scripts
4. Manually command the turntable to 180.0°: antenna will rotate right 180.0° +/- 5° 5.

Manually command the turntable to 180.1°: antenna will rotate left 359.9° +/- 5°

5.2.3.5. Pass Condition
Turntable mechanism covers the entire rotation range.

https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sharing
https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sharing

5.2.3.6. Testing Evidence
1) System Field of View Evidence:

https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sha
ring

5.2.4. Noise Tolerance
5.2.4.1. Project Partner Requirement

Tracking method is unaffected by outside signals

5.2.4.2. Engineering Requirement
The system will have a packet loss of less or equal to 5% over 2 hours of activity.

5.2.4.3. Testing Method
By Inspection.

5.2.4.4. Verification Process
1. Set up the transmitter to begin transmitting packets. A packet number associated with

the packet being sent will be appended to the transmission.
2. Set up the receiver to begin receiving packets. The packet number appended in the

transmission will be used to calculate how many packets are received versus expected.
This will print to the terminal of the computer the receiver is connected to.

3. Letting the transmitter transmit for 2 hours a running total of packet loss will be displayed
along with the contents of the transmission.

4. Confirm for a 2 hour period the packet loss rate is less than or equal to 5%.

5.2.4.5. Pass Condition
A print out of the running total for packet loss is less than or equal to 5%.

5.2.4.6. Testing Evidence
1) System Noise Tolerance:

https://drive.google.com/file/d/1lNAZQhA2z7LImkt6TVPxPrH6uQWOBtPV/view?usp=sh
aring

5.2.5. System Isolation
5.2.5.1. Project Partner Requirement

Tracking method does not interfere with Rover.

5.2.5.2. Engineering Requirement
The system will be self contained and self powered so that it will track location even when the
rover is not operational.

5.2.5.3. Testing Method
By Demonstration.

https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sharing
https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sharing
https://drive.google.com/file/d/1lNAZQhA2z7LImkt6TVPxPrH6uQWOBtPV/view?usp=sharing
https://drive.google.com/file/d/1lNAZQhA2z7LImkt6TVPxPrH6uQWOBtPV/view?usp=sharing

5.2.5.4. Verification Process
1. Run the transmitter with no connection to USB.
2. Connect the receiver to a computer and wait until packets begin being received.
3. This will confirm that the transmitter is able to transmit even when not powered by the

rover.

5.2.5.5. Pass Condition
Reception of packets on the receiver.

5.2.5.6. Testing Evidence
1) System Isolation (Youtube): https://youtube.com/shorts/ao4RAZTD53A?feature=share
2) System Isolation (Google Drive):

https://drive.google.com/file/d/1q2ynfjiUNPIv0i5S7O3A2fcvhQMLGA0N/view?usp=sharin
g

5.2.6. System Portability
5.2.6.1. Project Partner Requirement

Antenna mount should be easy to set up and transport

5.2.6.2. Engineering Requirement
The system will weigh no more than 200lbs and no single module shall exceed 50lbs.

5.2.6.3. Testing Method
By Inspection.

5.2.6.4. Verification Process
Materials:

- System
- 5/32" Hex driver
- Scale with lbs measurement
- Calibration weight

1. Weight calibration weight, note deviations
2. Place foundation subassembly on scale
3. Place tower-cradle subassembly on scale
4. Tabulate weights and add/subtract deviation from step 1

5.2.6.5. Pass Condition
Total system weighs less than 200 lb and individual subassembly modules weigh less than 50
lb.

https://youtube.com/shorts/ao4RAZTD53A?feature=share
https://drive.google.com/file/d/1q2ynfjiUNPIv0i5S7O3A2fcvhQMLGA0N/view?usp=sharing
https://drive.google.com/file/d/1q2ynfjiUNPIv0i5S7O3A2fcvhQMLGA0N/view?usp=sharing

5.2.6.6. Testing Evidence
1) System Portability Evidence:

https://drive.google.com/drive/folders/16Cgb8JZjdL2myaBVj7o2ePytjgV3n7Xe?usp=shar
ing

5.2.7. System Setup
5.2.7.1. Project Partner Requirement

Antenna mount should be easy to set up and transport.

5.2.7.2. Engineering Requirement
The system will require no more than 15 minutes for 9 out of 10 people (working in a 4 person
team) to initialize the system electrical/software sub-systems and level the turntable sub-system
to +/-15° relative to level ground.

5.2.7.3. Testing Method
By Demonstration.

5.2.7.4. Verification Process
Materials:

- System
- Timer
- OSURC Ground Station
- 5/32" hex head screwdriver
- Power drill
- > 6 OSURC members

1. From available OSURC members, form at a 4-person team
2. Stage system on unlevel terrain outside (weather permitting) or inside with terrain

analogs i.e. metal, plastic, wood blocks
3. Repeat the following for each team
4. Zero and start timer
5. Level system using built-in leveling feet and indicators: indicators show a maximum

deviation of +/- 15°
6. Power on system
7. Call and record time for each team

5.2.7.5. Pass Condition
Time logged for 9 out of 10 members should not exceed 15 minutes.

5.2.7.6. Testing Evidence
1) System Setup (Videos):

https://drive.google.com/drive/folders/1gf3SyEnM_UIlRvIvwXbMSIc2ew6h5CNv?usp=sh
aring

https://drive.google.com/drive/folders/16Cgb8JZjdL2myaBVj7o2ePytjgV3n7Xe?usp=sharing
https://drive.google.com/drive/folders/16Cgb8JZjdL2myaBVj7o2ePytjgV3n7Xe?usp=sharing
https://drive.google.com/drive/folders/1gf3SyEnM_UIlRvIvwXbMSIc2ew6h5CNv?usp=sharing
https://drive.google.com/drive/folders/1gf3SyEnM_UIlRvIvwXbMSIc2ew6h5CNv?usp=sharing

2) System Setup (timesheet):
https://docs.google.com/spreadsheets/d/1JuAbAHxVd1yYRojl5HFAKLFV65yoe17BtJJQ
CSATnKk/edit?usp=sharing

5.2.8. System Update Rate
5.2.8.1. Project Partner Requirement

Tracking is fast and comprehensive.

5.2.8.2. Engineering Requirement
The system should nominally update the angle of rotation once per second with a slowest
acceptable rate of one update every 5 seconds.

5.2.8.3. Testing Method

5.2.8.4. Verification Process
1. Set up the transmitter and receiver in normal operation.
2. Once the receiver starts receiving packets, check the timestamps on each received

packet.
3. Ensure that the time stamps between packets isn't more than 5 seconds or less than 1

second.

5.2.8.5. Pass Condition
Time stamp difference between adjacent received packets to be between 1 and 5 seconds.

5.2.8.6. Testing Evidence
1) System Update Rate:

https://drive.google.com/file/d/1Bwjwc1gNeN5Ucdoj0L8YoaWqcvN0SteC/view?usp=shar
e_link

5.3. References and File Links
5.3.1. References
5.3.2. File Links

5.4. Revision Table
Author Date Description

Angel Huang 4/28/23 Section Creation and Added
Content for Requirements and
Constraints

Sean Bullis 5/4/23 Added details for requirements
and constraints related to the
transmitter hardware and PCB.

https://docs.google.com/spreadsheets/d/1JuAbAHxVd1yYRojl5HFAKLFV65yoe17BtJJQCSATnKk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1JuAbAHxVd1yYRojl5HFAKLFV65yoe17BtJJQCSATnKk/edit?usp=sharing
https://drive.google.com/file/d/1Bwjwc1gNeN5Ucdoj0L8YoaWqcvN0SteC/view?usp=share_link
https://drive.google.com/file/d/1Bwjwc1gNeN5Ucdoj0L8YoaWqcvN0SteC/view?usp=share_link

Kira Kopcho 5/14/23 Minor formatting changes to
make section match the style of
the rest of the document

6. Project Closing
6.1. Future Recommendations

6.1.1. Technical Recommendations
It is recommended that subsequent teams:

a) Implement realistic parameters for interfaces, components, requirements, and other
project components.
During system and interface requirements and hardware development, and later testing

and revision, several parameters were ambitious in scope. An example was the original rotation
speed of 22.5 °/s that was reduced to 5 °/s after discussing whether or not the system’s motors
could achieve 22.5 °/s.

To prevent such occurrence, we recommend incorporating feasibility “studies”, or
research, during Fall Term alongside thorough design reviews and discussions with associated
parties.

b) Test power handling circuitry early.
As part of block and system testing, it was discovered that some power processing

circuits were not efficient enough, due to linear regulators, or were problematic. With power
being the cornerstone of any PCB, this is recommended to prevent damage and frustration in
later project stages.

Like part “a” above, we recommend through design reviews alongside earlier testing via
prototypes. Additionally, the team can work with OSURC and either develop new circuits or use,
with permission, a pre-existing circuit.

c) Ensure mechanical parts can be fabricated or reproducible though alternative
manufacturing techniques.
The system uses 3D printing, precision drilling, and CNC routing to produce the

mechanical components in the turntable and foundation sub-systems. The first two are readily
available but the last is not due to being supported by a team member and not OSU or OSURC
and will become an issue if/once parts break or degrade.

Future teams could find a 3rd party CNC machining service though this is not practical
due to processing times and cost. Alternatively, they could revise the parts to simplify geometry
and/or use 3D printing or milling processes.

d) Conduct design reviews
During the project, our design reviews were not as thorough as we would’ve liked and

some issues encountered might’ve been solved with a second or third pair of eyes.
For future projects, design reviews should, ideally, be held after designs are prototyped

and at a “ready to build/order” state. Ultimately, the design review schedule should be
determined by the future team but the review should be as thorough as possible.

6.1.2. Global Impact Recommendations
It is recommended that subsequent teams:

a) Reduce plastic waste through efficient part design and layout
3D printing and CNC cutting were unavoidable but could be optimized to reduce

unrecyclable plastic waste generation.
For 3D prints, parts could have features not requiring support (which also improves

quality), be small, or multifunctional. And for CNC cutting, the laying out of flat pieces shall be
compacted to reduce excessive trims/edges.

A final option is to use recyclable plastics but the fabrication process tends to remove
identifying features and thus ability to recycle said plastic.

b) Reduce PCB waste using thorough design reviews and proper recycling
Like point “a” the development of PCBs is going to require prototypes and extra

components and thus potentially result in waste. For instance, the turntable sub-system
controller required three revisions each with three PCBs per order due to mistakes and
changing requirements.

Reduction of waste is primarily done through design reviews to catch the mistakes or
revisions that would cause new PCB and component orders. Additionally, a future team should
have requirements for the system and blocks firmly established before Winter Term. Finally, the
waste generated should be properly disposed of via OSU or an external service such as state
operated waste transfer stations.

6.1.3. Teamwork Impact Recommendations
It is recommended that subsequent teams:

a) Include an individual with mechanical design and have access to machining processes.
While this project is primarily electrical and software, there will undoubtedly be

processes requiring mechanical knowledge alongside specialized machinery, and software.
Since mechanical engineering concepts are not taught in the ECE curriculum, we

recommend working with OSURC’s mechanical engineering teams or having one team member
teach themselves how to use Autodesk Inventor.

b) Establish communications with associated parties, the OSU Robotics Club, and provide
consistent updates though a consistent person(s).
Some project blocks will be attached to pre-existing or in-development systems that

OSURC is working on. The OSURC team needs to know such things as: power requirements,
space and mounting requirements, et cetera.

Additionally, communication between this and OSURC teams was spotty and usually
between multiple people related/unrelated to the problems at hand.

We simply recommend updating OSURC during their daily meetings through the parties
associated with any current problems or tasks.

6.2. Project Artifact Summaries with Links
1) Github: Link
2) Google Drive with schematics, mechanical files: Link
3) Google Drive with manuals, instructions: Link

https://github.com/OSURoboticsClub/Rover_RDF_Capstone
https://drive.google.com/drive/folders/1eabaa22pd-X_umyBzblk1s9yCK5jU_xw?usp=share_link
https://drive.google.com/drive/folders/1AitQD8xjyh8UOPr-0d0mMcfvInuupwlk?usp=share_link

6.3. Presentation Materials

Figure 6.3.1: Presentation Poster

Full size poster accessible at: Link
Showcase accessible at:

https://docs.google.com/presentation/d/1Te2-3O8Ij-KYwkplpVHp7rf31eS_9_Jg/edit?usp=share_link&ouid=101029940941897314415&rtpof=true&sd=true

Appendix

File Links
1) Jira Timeline:

https://drive.google.com/file/d/1CoS4GB7AdC4U7T53uIHK8zXw_XgSJR3a/view?usp=s
haring

2) RX Module PySerial Test Code:
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/blob/main/rover_gps/se
rial_test.py

3) Tracking Algorithm Code:
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/blob/main/rover_gps/tra
cking_algorithm.py

4) Semtech, “SX1276/77/78/79 Datasheet,” [Online] Available:
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpo
KFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE [Accessed: 11-Feb-2023].

5) Raspberry Pi, “RP2040 Datasheet - A Microcontroller by Raspberry Pi” [Online]
Available: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf [Accessed:
11-Feb-2023].

6) GPS Test Code:
https://drive.google.com/file/d/1V6JCfHaPI86UXx0uz5sLqmQ9VrP5L_-o/view?usp=drive
sdk

7) GPS Code Integrated into the Transmitter Code:
https://drive.google.com/file/d/1rF8ZZS-Qw9_9L2kERjRCqD2jdvwiPEKP/view?usp=driv
esdk

8) Transmitter Hardware Master Block Diagram: https://ibb.co/0c2jTL5
9) Transmitter Hardware KiCad Schematics/PCB Design:

https://github.com/bulliss93/Rover_RDF_Capstone/tree/main/Transceiver%20KiCad%20
Project

10) TB6600 Datasheet:
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG

11) AS5048A Datasheet:
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf

12) Molex 5569 Datasheet:
https://www.molex.com/webdocs/datasheets/pdf/en-us/0026013114_PCB_HEADERS.pd
f

13) JST XH Datasheet: https://www.jst.com/wp-content/uploads/2021/01/eXH-new.pdf
14) MAX232 Datasheet:

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F
%2Fwww.ti.com%2Flit%2Fgpn%2Fmax232

15) L78SXX Datasheet:
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f
/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.p
df

https://drive.google.com/file/d/1CoS4GB7AdC4U7T53uIHK8zXw_XgSJR3a/view?usp=sharing
https://drive.google.com/file/d/1CoS4GB7AdC4U7T53uIHK8zXw_XgSJR3a/view?usp=sharing
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/blob/main/rover_gps/serial_test.py
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/blob/main/rover_gps/serial_test.py
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/blob/main/rover_gps/tracking_algorithm.py
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/blob/main/rover_gps/tracking_algorithm.py
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://drive.google.com/file/d/1rF8ZZS-Qw9_9L2kERjRCqD2jdvwiPEKP/view?usp=drivesdk
https://drive.google.com/file/d/1rF8ZZS-Qw9_9L2kERjRCqD2jdvwiPEKP/view?usp=drivesdk
https://drive.google.com/file/d/1rF8ZZS-Qw9_9L2kERjRCqD2jdvwiPEKP/view?usp=drivesdk
https://drive.google.com/file/d/1rF8ZZS-Qw9_9L2kERjRCqD2jdvwiPEKP/view?usp=drivesdk
https://ibb.co/0c2jTL5
https://github.com/bulliss93/Rover_RDF_Capstone/tree/main/Transceiver%20KiCad%20Project
https://github.com/bulliss93/Rover_RDF_Capstone/tree/main/Transceiver%20KiCad%20Project
https://toshiba.semicon-storage.com/info/docget.jsp?did=14683&prodName=TB6600HG
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://www.molex.com/webdocs/datasheets/pdf/en-us/0026013114_PCB_HEADERS.pdf
https://www.molex.com/webdocs/datasheets/pdf/en-us/0026013114_PCB_HEADERS.pdf
https://www.jst.com/wp-content/uploads/2021/01/eXH-new.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fmax232
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fmax232
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/e9/be/53/a3/1f/6f/4f/75/CD00000449.pdf/files/CD00000449.pdf/jcr:content/translations/en.CD00000449.pdf

16) MCP1501-33xSN Datasheet:
https://ww1.microchip.com/downloads/en/DeviceDoc/20005474E.pdf

17) MP915-0.20-1% Datasheet:
http://www.caddock.com/Online_catalog/Mrktg_Lit/MP9000_Series.pdf

18) SN75C1168N Datasheet:
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F
%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

19) 1000680108 Datasheet: https://www.molex.com/pdm_docs/sd/1000680108_sd.pdf
20) SXH-001T-P0.6 Datasheet: https://www.jst-mfg.com/product/pdf/eng/eXH.pdf
21) USB-RS232-WE-1800-BT_5.0 Datasheet:

http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS232_CABL
ES.pdf

22) LRS-50-12 Datasheet:
https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf

23) falstad 50 % Duty Cycle Clock Generator Circuit:
https://drive.google.com/file/d/1y9Z1gmqx6X80IfSl0sj19NV8qep19TuO/view?usp=sharin
g

24) AS5048A Datasheet:
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf

25) SN75C1168 Datasheet:
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F
%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168

26) Full UI Code:
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/tree/main/UI

27) Receiver Code:
https://drive.google.com/file/d/1DGDJGhgGxPoLZCKzkVGwpo5AFW8kS-nG/view?usp=
sharing

28) Receiver CMakeLists:
https://drive.google.com/file/d/1Ah0BCqrQd3v2QfV8YBtBraRlB3RfE6TV/view?usp=shari
ng

29) Receiver CMake File:
https://drive.google.com/file/d/1HksnLogDHZxTHJ_7zE_J2TlCSrPDUSYO/view?usp=sh
aring

30) Receiver LoRa.h:
https://drive.google.com/file/d/1yR-YXFBH2KXLO9g4hBhGhy65XfYY5vN4/view?usp=sh
aring

31) Receiver LoRa.cpp:
https://drive.google.com/file/d/1DcJsCEDySoyNGLJYjnMaG6eEvOo7zAxu/view?usp=sh
aring

32) Receiver Print.h:
https://drive.google.com/file/d/1le-lDsvIk0i68eBVy3d64vierDe4t5WC/view?usp=sharing

33) Receiver Print.cpp:
https://drive.google.com/file/d/1tZAurQnRsHmb4oo6_pI3veBBn7MvgOmA/view?usp=sh
aring

https://ww1.microchip.com/downloads/en/DeviceDoc/20005474E.pdf
http://www.caddock.com/Online_catalog/Mrktg_Lit/MP9000_Series.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.molex.com/pdm_docs/sd/1000680108_sd.pdf
https://www.jst-mfg.com/product/pdf/eng/eXH.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS232_CABLES.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_USB_RS232_CABLES.pdf
https://www.meanwellusa.com/upload/pdf/LRS-50/LRS-50-spec.pdf
https://drive.google.com/file/d/1y9Z1gmqx6X80IfSl0sj19NV8qep19TuO/view?usp=sharing
https://drive.google.com/file/d/1y9Z1gmqx6X80IfSl0sj19NV8qep19TuO/view?usp=sharing
https://ams.com/documents/20143/36005/AS5048_DS000298_4-00.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fsn65c1168
https://github.com/kira-the-engineer/OSURC-RDF-Tracking-Algo/tree/main/UI
https://drive.google.com/file/d/1DGDJGhgGxPoLZCKzkVGwpo5AFW8kS-nG/view?usp=sharing
https://drive.google.com/file/d/1DGDJGhgGxPoLZCKzkVGwpo5AFW8kS-nG/view?usp=sharing
https://drive.google.com/file/d/1Ah0BCqrQd3v2QfV8YBtBraRlB3RfE6TV/view?usp=sharing
https://drive.google.com/file/d/1Ah0BCqrQd3v2QfV8YBtBraRlB3RfE6TV/view?usp=sharing
https://drive.google.com/file/d/1HksnLogDHZxTHJ_7zE_J2TlCSrPDUSYO/view?usp=sharing
https://drive.google.com/file/d/1HksnLogDHZxTHJ_7zE_J2TlCSrPDUSYO/view?usp=sharing
https://drive.google.com/file/d/1yR-YXFBH2KXLO9g4hBhGhy65XfYY5vN4/view?usp=sharing
https://drive.google.com/file/d/1yR-YXFBH2KXLO9g4hBhGhy65XfYY5vN4/view?usp=sharing
https://drive.google.com/file/d/1DcJsCEDySoyNGLJYjnMaG6eEvOo7zAxu/view?usp=sharing
https://drive.google.com/file/d/1DcJsCEDySoyNGLJYjnMaG6eEvOo7zAxu/view?usp=sharing
https://drive.google.com/file/d/1le-lDsvIk0i68eBVy3d64vierDe4t5WC/view?usp=sharing
https://drive.google.com/file/d/1tZAurQnRsHmb4oo6_pI3veBBn7MvgOmA/view?usp=sharing
https://drive.google.com/file/d/1tZAurQnRsHmb4oo6_pI3veBBn7MvgOmA/view?usp=sharing

34) Transmitter Code Github:
https://github.com/bulliss93/Rover_RDF_Capstone/tree/main/Transmitter_code

35) System Accuracy Evidence:
https://drive.google.com/drive/folders/1MT-oWe74SUMO_BPuBn3LY3fwDfsNVtF4?usp=
sharing

36) System Tracking Speed Evidence:
https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sha
ring

37) System Field of View Evidence:
https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sha
ring

38) System Noise Tolerance:
https://drive.google.com/file/d/1lNAZQhA2z7LImkt6TVPxPrH6uQWOBtPV/view?usp=sh
aring

39) System Isolation (Youtube): https://youtube.com/shorts/ao4RAZTD53A?feature=share
40)System Isolation (Google Drive):

https://drive.google.com/file/d/1q2ynfjiUNPIv0i5S7O3A2fcvhQMLGA0N/view?usp=sharin
g

41) System Portability Evidence:
https://drive.google.com/drive/folders/16Cgb8JZjdL2myaBVj7o2ePytjgV3n7Xe?usp=shar
ing

42) System Setup (Videos):
https://drive.google.com/drive/folders/1gf3SyEnM_UIlRvIvwXbMSIc2ew6h5CNv?usp=sh
aring

43) System Setup (timesheet):
https://docs.google.com/spreadsheets/d/1JuAbAHxVd1yYRojl5HFAKLFV65yoe17BtJJQ
CSATnKk/edit?usp=sharing

44) System Update Rate:
https://drive.google.com/file/d/1Bwjwc1gNeN5Ucdoj0L8YoaWqcvN0SteC/view?usp=shar
e_link

45) Github: https://github.com/OSURoboticsClub/Rover_RDF_Capstone
46) Google Drive with schematics, mechanical files:

https://drive.google.com/drive/folders/1eabaa22pd-X_umyBzblk1s9yCK5jU_xw?usp=sha
re_link

47) Google Drive with manuals, instructions:
https://drive.google.com/drive/folders/1AitQD8xjyh8UOPr-0d0mMcfvInuupwlk?usp=shar
e_link

Code Snippets
1) Rover GPS Receiver Code

#include <stdio.h>
#include <string.h>
#include "pico/stdlib.h"
#include "hardware/uart.h"

https://github.com/bulliss93/Rover_RDF_Capstone/tree/main/Transmitter_code
https://drive.google.com/drive/folders/1MT-oWe74SUMO_BPuBn3LY3fwDfsNVtF4?usp=sharing
https://drive.google.com/drive/folders/1MT-oWe74SUMO_BPuBn3LY3fwDfsNVtF4?usp=sharing
https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sharing
https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sharing
https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sharing
https://drive.google.com/file/d/1nuDwsXQXzKhutJFxQHdvQpJxFlPpsCyU/view?usp=sharing
https://drive.google.com/file/d/1lNAZQhA2z7LImkt6TVPxPrH6uQWOBtPV/view?usp=sharing
https://drive.google.com/file/d/1lNAZQhA2z7LImkt6TVPxPrH6uQWOBtPV/view?usp=sharing
https://youtube.com/shorts/ao4RAZTD53A?feature=share
https://drive.google.com/file/d/1q2ynfjiUNPIv0i5S7O3A2fcvhQMLGA0N/view?usp=sharing
https://drive.google.com/file/d/1q2ynfjiUNPIv0i5S7O3A2fcvhQMLGA0N/view?usp=sharing
https://drive.google.com/drive/folders/16Cgb8JZjdL2myaBVj7o2ePytjgV3n7Xe?usp=sharing
https://drive.google.com/drive/folders/16Cgb8JZjdL2myaBVj7o2ePytjgV3n7Xe?usp=sharing
https://drive.google.com/drive/folders/1gf3SyEnM_UIlRvIvwXbMSIc2ew6h5CNv?usp=sharing
https://drive.google.com/drive/folders/1gf3SyEnM_UIlRvIvwXbMSIc2ew6h5CNv?usp=sharing
https://docs.google.com/spreadsheets/d/1JuAbAHxVd1yYRojl5HFAKLFV65yoe17BtJJQCSATnKk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1JuAbAHxVd1yYRojl5HFAKLFV65yoe17BtJJQCSATnKk/edit?usp=sharing
https://drive.google.com/file/d/1Bwjwc1gNeN5Ucdoj0L8YoaWqcvN0SteC/view?usp=share_link
https://drive.google.com/file/d/1Bwjwc1gNeN5Ucdoj0L8YoaWqcvN0SteC/view?usp=share_link
https://github.com/OSURoboticsClub/Rover_RDF_Capstone
https://drive.google.com/drive/folders/1eabaa22pd-X_umyBzblk1s9yCK5jU_xw?usp=share_link
https://drive.google.com/drive/folders/1eabaa22pd-X_umyBzblk1s9yCK5jU_xw?usp=share_link
https://drive.google.com/drive/folders/1AitQD8xjyh8UOPr-0d0mMcfvInuupwlk?usp=share_link
https://drive.google.com/drive/folders/1AitQD8xjyh8UOPr-0d0mMcfvInuupwlk?usp=share_link

#include "pico/time.h"
#include "pico/multicore.h"

// UART definitions
#define UART_ID uart0
#define BAUD_RATE 9600

// Configure LED pin
#define LED_PIN 25

// Pins GP16 and GP17 are being used for testing purposes with a
pico;
// pins 0(TX) and 1(RX) will be used when this code is uploaded to
the
// transceiver.
#define UART_TX_PIN 16
#define UART_RX_PIN 17

// Definitions used by the parse_nmea_sentence function
#define NMEA_BUF_SIZE 100
#define NMEA_SENTENCE_GPGGA "$GPGGA"

// Define the NMEA_data struct
typedef struct {

double latitude;
double longitude;
int hour;
int minute;
int second;

} NMEA_data;

// NMEA_data parsing function which takes in an NMEA sentence and
fills in the
// longitude, latitude, and time members of the NMEA_data struct.
NMEA_data parse_nmea_sentence(const char *sentence) {

NMEA_data data = {0};

if (strstr(sentence, NMEA_SENTENCE_GPGGA) == sentence) {
char *p = (char *)sentence;

// move pointer to time
p = strchr(p, ',') + 1;

// parse time
int hour, minute, second;

sscanf(p, "%2d%2d%2d", &hour, &minute, &second);
data.hour = hour;
data.minute = minute;
data.second = second;

// move pointer to latitude
p = strchr(p, ',') + 1;

// parse latitude
double latitude, latitude_minutes;
sscanf(p, "%2lf%lf", &latitude, &latitude_minutes);
data.latitude = latitude + latitude_minutes / 60.0;

// move pointer to N/S indicator
p = strchr(p, ',') + 1;

// check N/S indicator and adjust latitude
if (*p == 'S') {

data.latitude = -data.latitude;
}

// move pointer to longitude
p = strchr(p, ',') + 1;

// parse longitude
double longitude, longitude_minutes;
sscanf(p, "%3lf%lf", &longitude, &longitude_minutes);
data.longitude = longitude + longitude_minutes / 60.0;

// move pointer to E/W indicator
p = strchr(p, ',') + 1;

// check E/W indicator and adjust longitude
if (*p == 'W') {

data.longitude = -data.longitude;
}

}

return data;
}

2) Main Code and Valid Check Function:
void print_if_valid(const char *str) {

int len = strlen(str);

int i;

int has_extra_character = 0;

for (i = 0; i < len; i++) {

if (str[i] != '0' && str[i] != '1' && str[i] != '2' && str[i] != '3' &&
str[i] != '4' && str[i] != '5' && str[i] != '6' && str[i] != '7' && str[i] !=
'8' && str[i] != '9' && str[i] != ',' && str[i] != ':' && str[i] != '-' &&
str[i] != '.' && str[i] != 'U' && str[i] != 'T' && str[i] != 'C') {

has_extra_character += 1;

}

}

if (!has_extra_character) {

printf("%s\n", str);

}

has_extra_character = 0;

}

int main(){

stdio_init_all();

if (!LoRa.begin(915E6)){

printf("Starting LoRa failed!\n");

while(1){

printf("Failed!\n");

}

}

printf("LoRa Started\n");

LoRa.receive();

int counter=0;

while(1){

int packetSize = LoRa.parsePacket();

if(packetSize > 0){

string message = "";

while(LoRa.available()){

message += (char)LoRa.read();

}

print_if_valid(message.c_str());

}

return 1;

}

