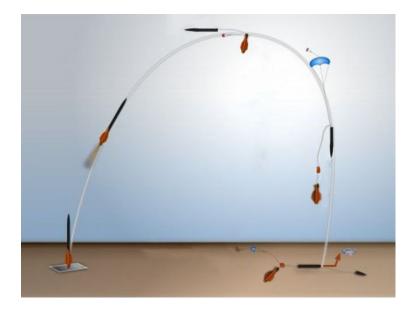


Oregon State University

Flight
Readiness
Review
03/10/2020



Mission Overview

- 2. Motor burnout
- 3. Separation at apogee
- 4. Drogue parachute deploy
- 5. Main parachute deploy
- 6. Landing
- 7. Rover deployment
- 8. Ice collection
- 9. Ice transportation

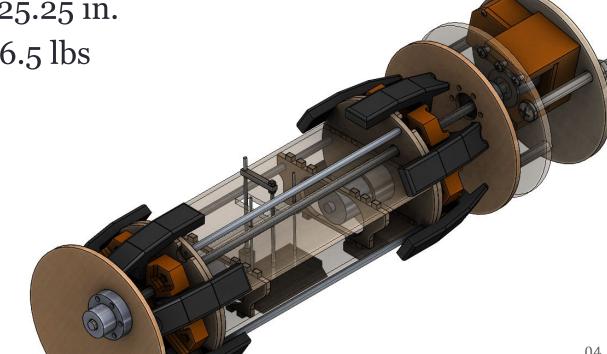
Launch Vehicle Overview

Length: 119 in.

Weight: 60.9 lbf

Inner Diameter: 6.25 in.

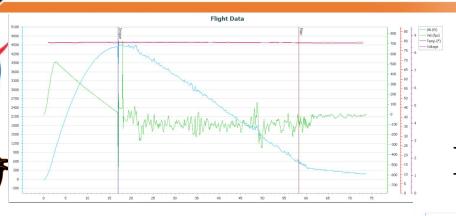
Rail: 1515

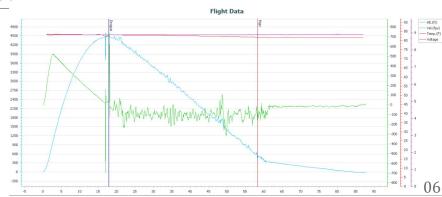


Payload Overview

Total Weight: 6.5 lbs

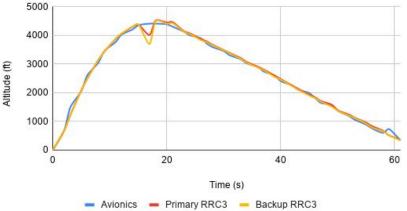
Launch Vehicle and Payload Demonstration



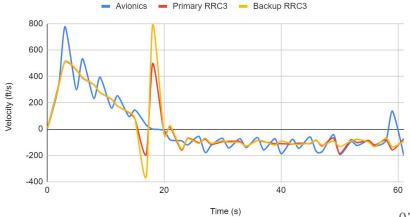

RRC3 Graphs

Backup RRC3 Data

Primary RRC3 Data

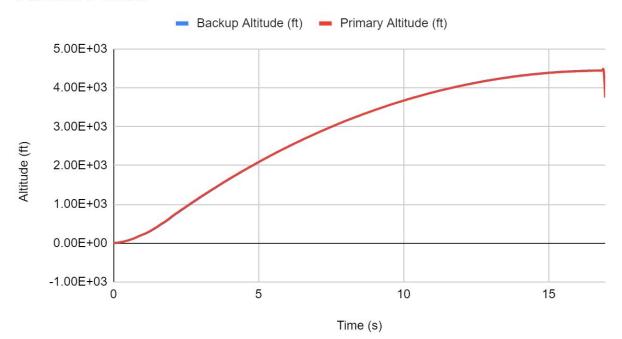


RRC3 and Avionics Graphs

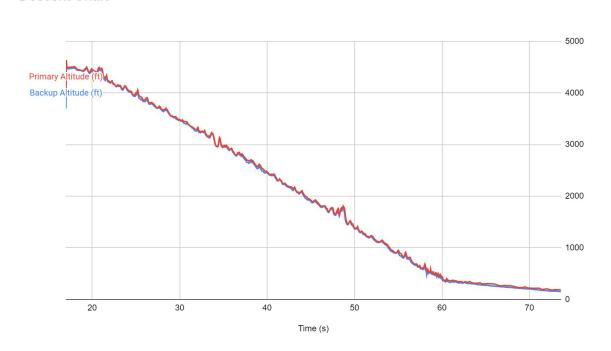


Avionics and RRC3 Altitude Comparison

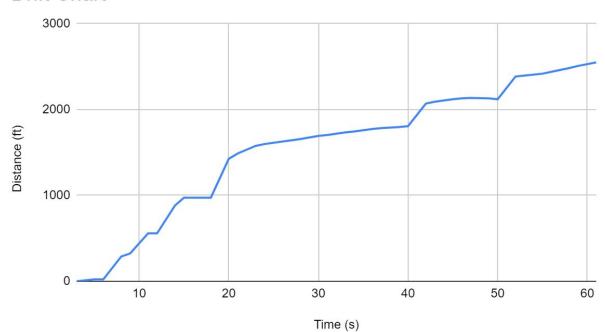
Avionics and RRC3 Velocity Comparison



Ascent Graph



Descent Graph

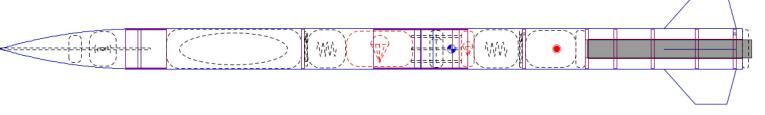


Drift

Drift Chart

Aerodynamics and Recovery

Overview


- Parachutes
- Recovery Hardware
- Deployment Energetics
- Testing

Stability Margin

With Motor

 $C_p = 88.65 \text{ in}$

 $C_G = 71.89 \text{ in}$

Stability: 2.62 calibers

After Motor Burnout

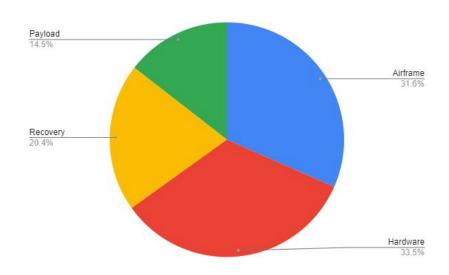
 $C_p = 88.65 \text{ in}$

 $C_G = 68.414 \text{ in}$

Stability: 3.19 calibers

Predicted Altitude in Huntsville

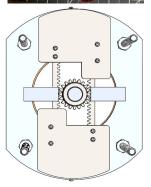
Wind Speeds (mph)	OpenRocket Projected Altitude (ft)	Projected altitude with Ballast	Projected Altitude with Airbrakes	
0	4658	4066 - 5.68 lb	4000	
5	4650	4066 - 5.63 lb	4000	
10	4637	4066 - 5.48 lb	4000	
15	4603	4066 - 5.29 lb	4000	
20	4570	4066 - 5.06 lb	4000	



Mass Distribution

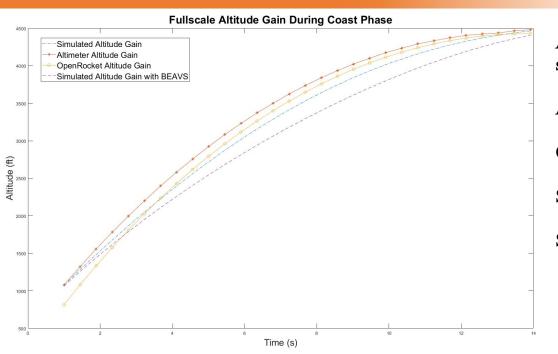
Blade Extending Apogee Variance System (BEAVS) 2.0

Coupled ballast bays



Active System:

• Driven by servo and sensors



BEAVS 2.0 Altitude Adjustment

Apogee Altitudes from Full scale 1:

Altimeter - 4456 ft

OpenRocket - 4430 ft

Simulated w/o BEAVS - 4466 ft

Simulated w/ BEAVS - 4400 ft

Parachutes

Main

- 12 ft Toroidal Parachute
- Cd = 2.2

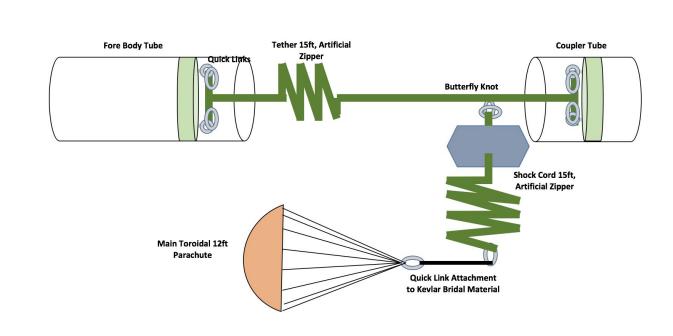
Drogue

- 36 in. X-Form Parachute
- Cd = 0.7

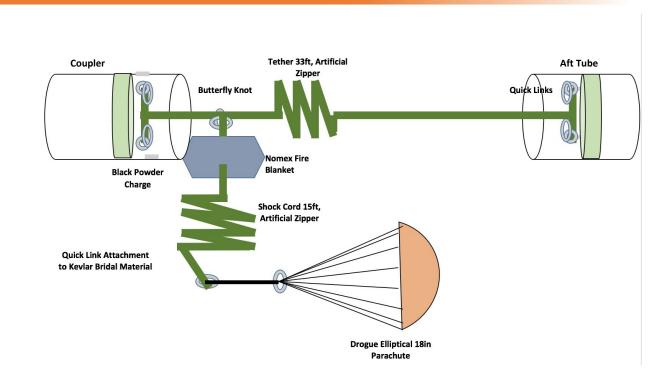
^{*} Both purchased from Fruity Chutes

Shock Cord

Fruity Chutes


- 1 in. Nylon webbing
- 3x 15 ft sections (tether, drogue & main)
- 1x 33 ft section (drogue tether)

Recovery Harness Main

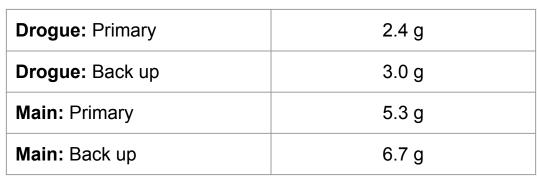


Recovery Harness Drogue

Kinetic Energy Analysis

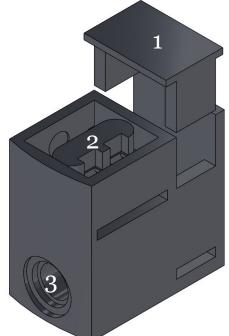
Measurement	Fore section	Coupler	Aft section
Weight (lbf)	24.05	6.4	24.7
Landing Velocity (ft/s)	14.1	14.1	14.1
Landing Kinetic Energy (ft-lbf)	73.19	19.47	74.9

Descent Times and Drift



Wind Speed (mph)	0	5	10	15	20	Descent Times (s)
Matlab Drift (ft)	0	459	1100	1682	2103	82
OpenRocket Drift (ft)	12.4	125	565	990	1467	76.6

Ejection Charges



Energetic Mid-flight Black powder Ejection Reserve System (EMBERS)

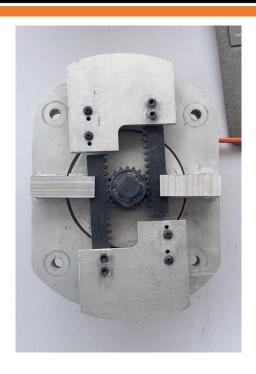
Designed to enhance the safety of the parachute ejection system

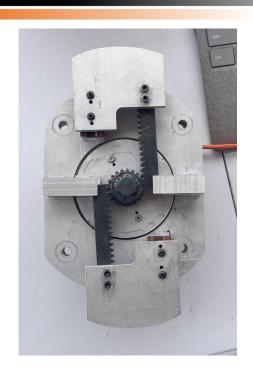
3 sections:

- Battery Chamber/Cap
- 2. Sliding Chamber/Slider
- 3. Switch Housing

BP ground ejection testing

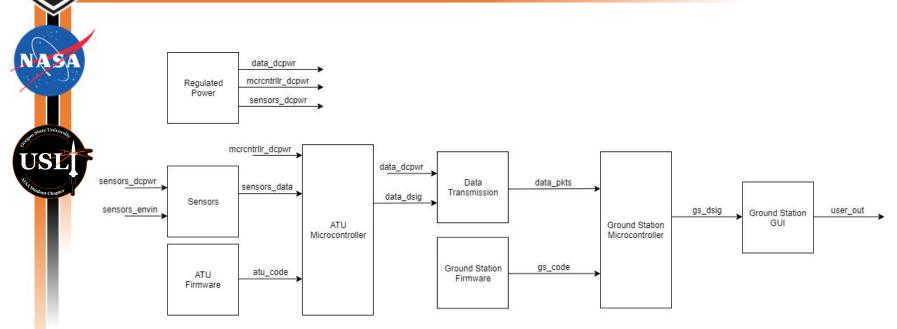
EMBERS testing





Avionics and BEAVS 2.0 Electronics

Overview

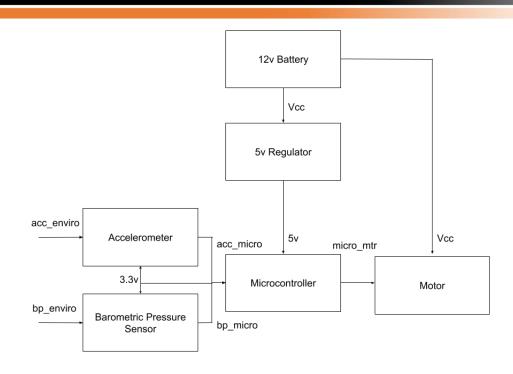


- Collects data: acceleration, altitude, location
- Transmits data
- Ground Station
 - Analyses data
 - Visual display
- BEAVS
 - Collects data: acceleration, altitude
 - Actuates motor

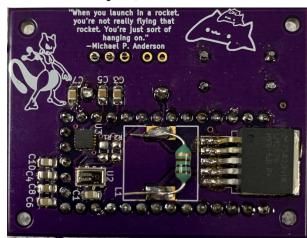
Avionics

Parts

- Accelerometer: ICM2098
- Barometric Pressure: MPL3115A
- GPS: UBlox MAX-M8Q
- XBee Transmitter
- Teensy 3.6



BEAVS



Parts

- Accelerometer: ADXL377
- Barometric Pressure: MPL3115A
- Teensy 4.0

- Checked error based on fixed coordinates
- Passed
- Barometric Pressure:
 - In flight compared with in flight altimeters
 - Passed
- Power:
 - Various input voltages and current loads
 - Passed

Avionics and BEAVS 2.0 Software

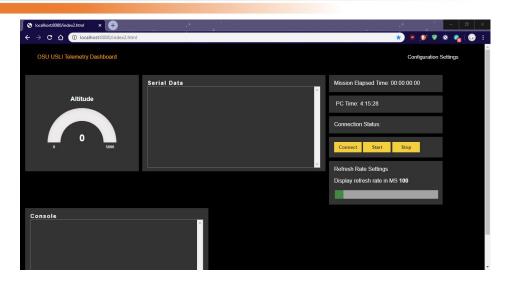
Overview

• Avionics GUI

- Contains all received information
- Formats it in real time

BEAVS

- Algorithm to control motors
- Reacts quickly



Avionics GUI

- GPS and altitude
- Saves data
 - CSV file
- Configures serial settings

BEAVS 2.0

Motor Control Activation

• Sensor Data Acquisition

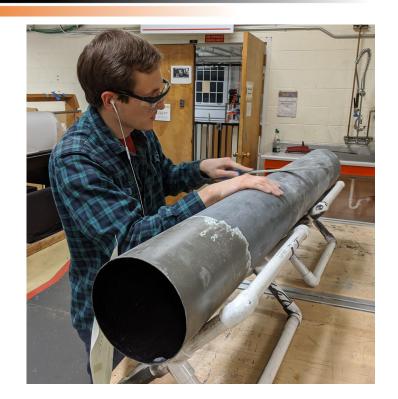
• PID Control Scheme

Kalman Filter

Overview

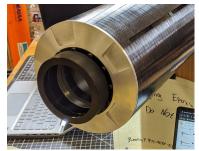
Airframe

- Tubes cut to size with custom fixturing
- Machined on manual mill to ensure accuracy and alignment



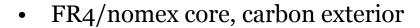
Fore Section

- Repurposed Fiberglass Airframe
- 44.5 inches in length
- Anti zippering for main parachute bay end
- Converted with patching of excess holes, removal of excess paint, cut down to correct size.

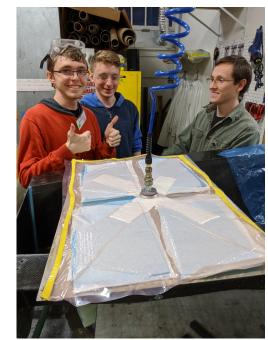

Aft Section

- 49.2 inches in length
- Anti zippering on drogue parachute bay end
- Through wall mounted fins with large fillets
- Aero Pack 75mm motor retainer mounted to 6061 aluminum thrust plate

Bulkheads and Centering Rings


- CNC routed out of sheets
- Sanded to remove rough edges
- Epoxied in place with G5000 RocketPoxy
- 4 centering rings, 5 bulkheads

Fins



- Quasi-isotropic layup
- Vacuum and heat cured in autoclave
- Epoxied to airframe with G5000 RocketPoxy

Motor Selection

• Estimated apogee: 4601 ft

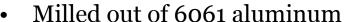
• Burn Time: 2.32 seconds

• Average Thrust: 494.6 lb-s

• Total Impulse: 1147 lb-s

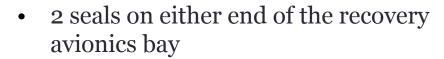
• Diameter: 2.95 in.

• Thrust to weight: 11.4:1


• Rail exit velocity: 73.4 ft/s

Aft Parachute Mounts

- Steel eye bolts mounted prior to epoxy
- Affixed to airframe with G5000 RocketPoxy
- Rail guid mounted in mount through airframe wall
- Seal against sealing bulkhead



Pressure Seals

- Single sealing bulkhead on top of BEAVS bay
- Uses compressing bolts to compress o-ring gasket sealing against inside of airframe

Coupler

- Fiberglass and carbon fiber construction
- Unidirectional fiberglass layup
- Carbon fiber outer band
- Protects recovery avionics bay
- 6.25 inch outer diameter with couplings extending 6.5 inches into fore and aft sections
- Fully loaded, 6.5 lbf

Nose Cone Failure

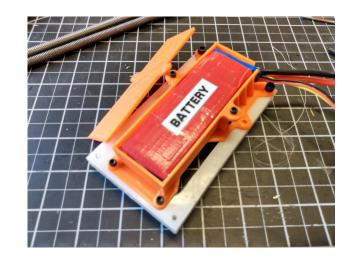
- Analysis of flight revealed possible causes
 - Shear Pin size
 - Excess velocity
 - Added ballast
- Mitigation of future failures to take place along with redesign of nose cone retention system
- Payload retention system will be integrated into the nose cone retention with a factor of safety greater than 2.

Nose Cone

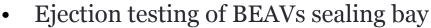
Manufactured out of 7.5 inch 5:1 ogive nose cone

• 26.5 inches tall, 5.4 lbf

• Repaired with a scarf joint repair method



Nose Cone Avionics Bay


- Mounts of aluminum threaded rod in center of nose cone
- 3D printed mounting case for battery
- HDPE mounting for PCB
- Requires repairs after nose cone failure

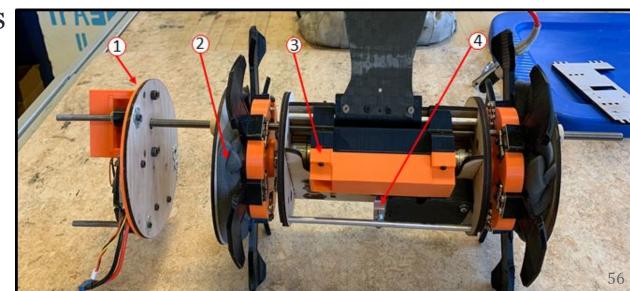
Testing Results

- Successful after adjustment of sealing gasket and multiple ejection tests
- Testing of assembled avionics bay venting
 - Successfully igniting E-match at simulated apogee verifying required venting

Impact testing of Fins

- Completing full scale landing, after being drug 10 feet through gravel and dirt fins showed minimal damage, only showing light scratching
- Full scale test launch
 - No visible damage to launch vehicle airframe components save for nose cone. No signs of strain or buckling in thrust plate, parachute mounting points, or recovery bay structure

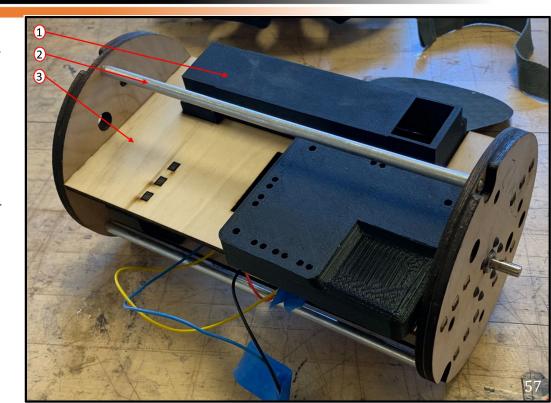
Payload



Overview

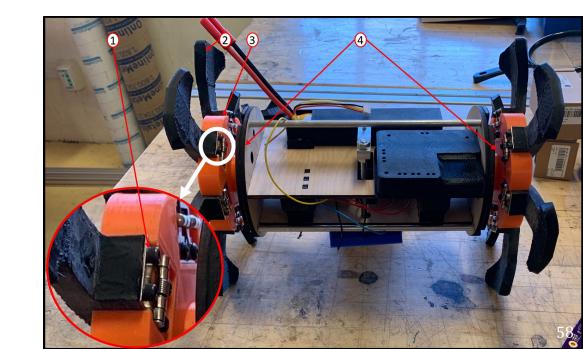
Sub-Systems

- 1. Ejection\Retention
- 2. Push Plates
- 3. Chassis
 - 4. Collection
 - 5. Drivetrain



Chassis

- 1. PLA, battery, and PCB cases
- 2. Aluminum
 - supports
 - Laser cut wooden plates

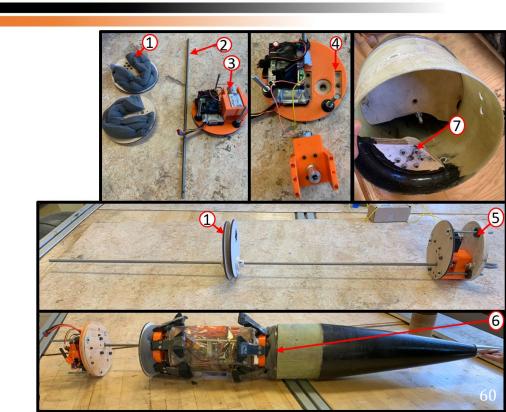


Drivetrain

- 1. Spring hinges
- 2. Spokes
- 3. Hubs
- 4. Bi-axial

Collection System

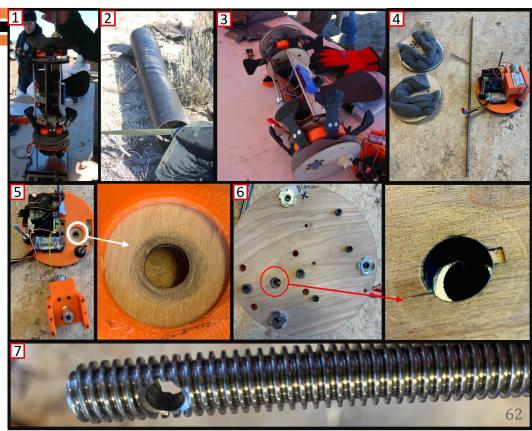
- 1. Scoop
- 2. Motor Mount
- 3. Bracket
 - show the system in action



Ejection/Retention System

- 2. Lead Screw
- 3. Ejection Assembly
- 4. Electronics
 Mount
- 5. Full Assembly
- 6. Assembly w/ Payload
- 7. Nose Cone Thread

Testing


	Test/System	Number/Type	Status	Results	Notes
		CES Chassis Material Analysis	Complete	Successful	
		Chassis FEA	Complete	Successful	
		Chassis Prototyping	Complete	Successful	
		Wheel Prototyping	Complete	Successful	
	Payload Testing	Collection Prototype Testing	Complete	Successful	
		Drop Testing	Complete	Successful	
		Drive Testing	In Progress	N/A	
		Battery Life Testing	In Progress	N/A	
		Ejection System Testing	Complete	Successful	
		Retention Strength Testing	Complete	Successful	
		Retention Robustness Testing	Complete	Successful	

Testing, Test Launch Review

- 1. Pre launch
- 2. Fore-section landing
- 3. System post launch
- 4. Retention assembly (post launch)
- 5. Bulkhead damage
- 6. Bulkhead damage (fore side)
- 7. Lead screw

Payload Electronics

Overview

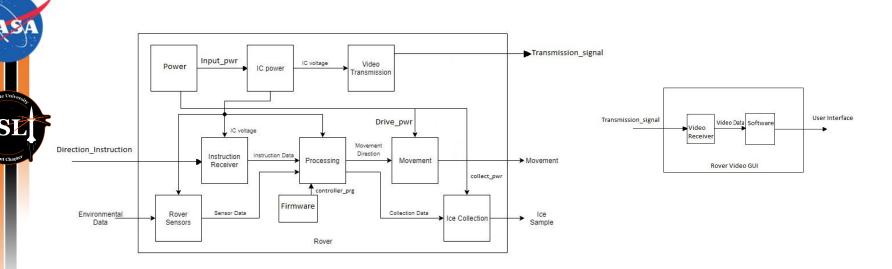
Sensors


- GPS
- Gyroscope

Movement

- 3 motor drivers
- 3 12 V motors

Control


- Xbox controller
- Transmitter

Block Diagram

Testing

- Power supplies are able to supply necessary power
- Passed
- Sensor testing:
 - GPS and accelerometer
 - Passed
- Motor Driver:
 - In progress: Manufacturing errors
- Control:
 - Passed

Payload Software

Overview

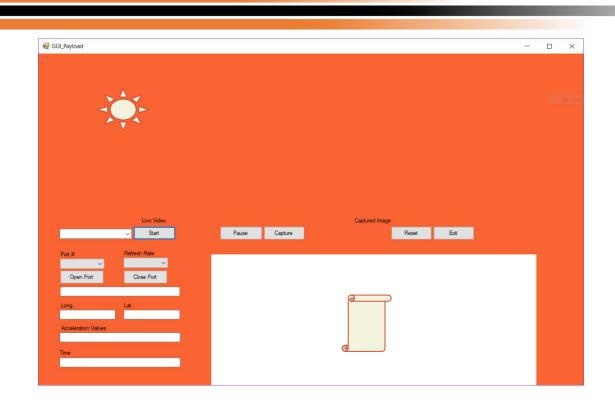
GUI:

Displays sensor, camera, and map data

Control Program:

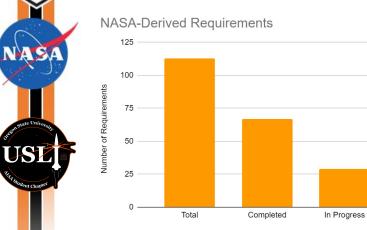
Controls the rover wirelessly via Xbox remote

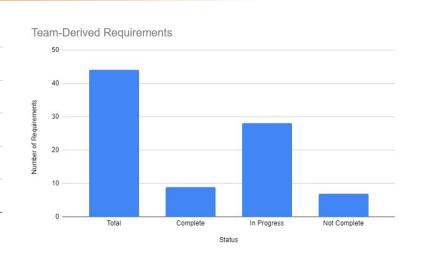
Testing


GUI testing:

- Testing displayed data vs "actual data" to confirm correctness
- Limiting user input to reduce breakage
- Testing usability by team members

Payload GUI


Testing and Requirement Verification



Requirement Verifications

Not Complete

Total Requirements: 113
Not Complete: 17
In Progress: 29
Completed: 67

Status

Total Requirements: 44
Not Complete: 6
In Progress: 26
Completed: 7

STEM Engagement

Overview

• OSRT has brought our STEM Engagement efforts out of the state of Oregon and into California.

OSRT has reached a total of 2,038 community members.

Building a Bridge

Directions:

Give a short introduction to the forces involved with building a bridge

The students will be asked to build a bridge out of paper that they will be able to drive their toy cars across

Supplies: Paper, tape, small toy cars

Learning objectives: Finding different ways to fold and roll the paper in order to create more stable structures, experimenting with different forces to see them in action

Assessment method: watching the students test their bridges by driving the toy cars across them

Climbing Water Lesson Plan

Grade Level: K-2

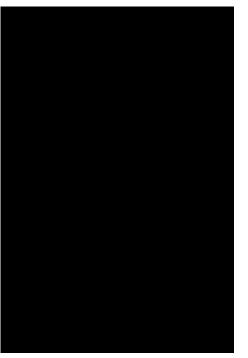
Materials: water, food coloring, paper towels, two cups Goals: Students will learn about the capillary action of water

- 1. Fill one of the cups with water
- 2. Add food coloring to the water
- Dip the paper towel in the water and use it to transfer the water from one cup to the other.

Full List of Events/Schools Visited

Date	Event	Engagement Number
Oct.12th	Football Table	24
Oct. 25th	Fir Grove Elementary	15
Nov.1st	Science Saturday Happy Valley, OR.	75
Nov. 4th-5th	OSU Discovery Days	1,109
Nov. 8th	Football Table	57
Nov.12 &14th	Football Table	56
Nov.16th	Football Table	45
Nov. 20th	Saint Thomas More Catholic School	27
Nov. 21st	Basketball Table	20

Date	Event	Engagement Number
Dec.13th	Monte Vista HS	26
Jan.10th	Basketball Table	20
Jan. 17th	Lake Oswego Junior High	93
Jan. 25th	Evergreen Air and Space Museum	44
Jan. 31st	Talmadge MS	32
Feb. 25th	Saint Thomas More Catholic School	25
Feb. 27th	Periwinkle Elementary	350
Feb. 29th	Rocketry Workshop Eugene, OR.	20


Pictures

Detailed and Responsive

Checklist Iteration

Averted Incident Reports

Checklist Improvement

More safety considerations

More inspector interaction

Actionable, discrete steps

Making Use of A "Near Miss"

Non-emergency reporting

Chain of command revision steps

Continue to improve, even during success

Questions?