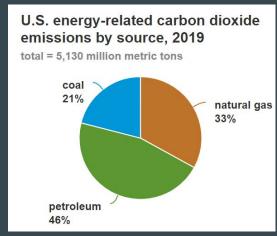
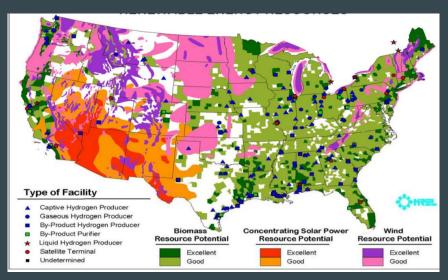

Hydrogen Fired Turbine Power Plant


•••

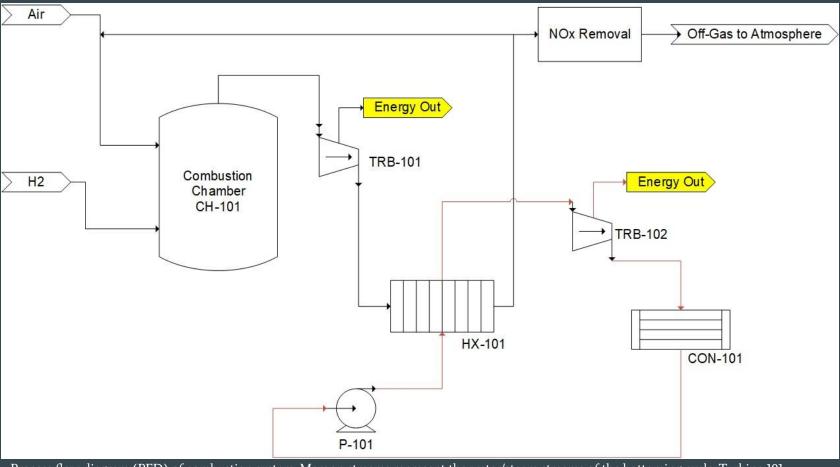
Team 1.2
Claire Niemet, Katie Trese, Reed J Sattizahn

Natural Gas: The Future?


- Electricity production accounts for 25% of US greenhouse gas emissions¹
- Main source of electricity is from petroleum (37%)²
- Natural gas emits 52% less CO₂ than coal,
 31% less than petroleum³
- Natural gas just a temporary fix
 - Still attributes 33% of energy-related carbon emissions²
 - Mostly obtained by hydraulic fracturing (fracking)³
- Conventional renewable energy is expensive and/or intermittent

Hydrogen: The Next Step in Green Energy

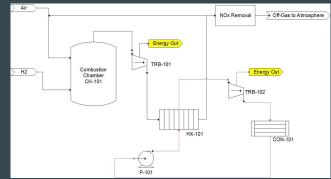
Most abundant element, can be generated locally

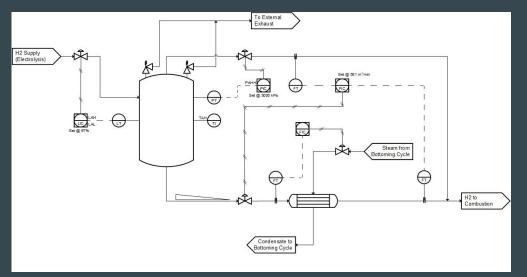

- No carbon-based emissions
- More heat released

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
$$\triangle H = 74.8 \text{ kJ}$$

$$2H_2 + O_2 \rightarrow 2H_2O$$
,
 $\triangle H = 120.9 \text{ kJ}$

Con: NOx formation


Hydrogen facilities and renewable energy resources in the U.S. [4]


Process flow diagram (PFD) of combustion system. Maroon streams represent the water/steam streams of the bottoming cycle. Turbine 101 (TRB-101) is the primary turbine. Excess heat in exhaust is used to produce high pressure steam in the bottom cycle (HX-101). The bottoming cycle increases plant efficiency by \sim 10% and provides a source of heat for the plant. NOx removal system scrubs effluent before release to atmosphere and exhaust gas recycle (EGR) decreases amount of NOx produced in the process.

Process Methods and Unique Challenges

- Bottoming cycle to boost efficiency
- NOx prevention: exhaust recycle
- NOx removal system
- Liquid hydrogen storage
 on-site presents unique safety
 hazards that must be
 mitigated

Process flow diagram shown previously of the combustion and bottoming cycles

P&ID of hydrogen storage and supply system

Thank you!

References

- 1) Environmental Protection Agency. (2021, April 14). *Sources of Greenhouse Gas Emissions*. EPA. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
- 2) U.S. Energy Information Administration EIA Independent Statistics and Analysis. Where greenhouse gases come from U.S. Energy Information Administration (EIA). (n.d.). https://www.eia.gov/energyexplained/energy-and-the-environment/where-greenhouse-gases-come-from.php#:~:text=In%202019%2C%2 0the%20electric%20power,electric%20power%20sector%20CO2%20emissions.
- 3) U.S. Energy Information Administration EIA Independent Statistics and Analysis. Natural gas explained U.S. Energy Information Administration (EIA). (n.d.). https://www.eia.gov/energyexplained/natural-gas/#:~:text=In%20conventional%20natural%20gas%20deposits,a%20well%20under%20high%20pressure.
- 4) A. Herzog, and M. Tatsutani, "A Hydrogen Future? An Economic and Environmental Assessment of Hydrogen Production Pathways", *National Resources Defense Council*, Nov. 2005