COLLEGE OF ENGINEERING

Design Objectives

- Protect the surrounding ecosystem
- Design with consideration to serviceability and longevity of the structure
- Inclusive design and accessibility

FOUNDATION

- Foundation Type: Strip Footings with rammed aggregate piers (RAP)
 - Load is spread over larger area
 - Constructed as one element
 - 78 RAPs installed under footings
 - RAPs mitigate settlement through compacted aggregate
 - Cost effective, easy to install

Foundation Drawings

Civil and Construction Engineering

OSU HATFIELD MARINE SCIENCE CENTER STUDENT HOUSING

Drawing provided by Mackenzie Location: South of Hatfield Marine Science Center campus in Newport, OR Project Type: Residential (apartment building) Expected Occupancy : 77 apartments, mix of 1- and 2-bedroom units

Structural : Lateral

Steel Chevron Diagonal bracing (N-S Elevation)

- Less connections i.e. cheap.
- Durable compared to wood shear walls.
- Pre-fabricated hence less work during construction.

N-S bracing drawing

Google Earth Project Location

Structural : Gravity

Steel Frame

- Durability
- Corrosion resistance against harsh coastal elements.

			ψ <u></u>	00	4 124'-0"	<u>()</u> ())	Q	
			26'-0"	6'-0" 20'-0"	24'-0"	12'-0"	36'-0"		
			28-0"						
0	3.3		W14x43	W14x43	W14x43		W14x43		
0		44	W14x43	W14x43	¥ W14x43		W14x43	444	
	26'-0'	×LCW	W14x43	× ₩14x43	₩14×43	W21×	W14x43	<u> </u>	26'-0'
0			W14x43	W14x43	W14x43		W14x43		0
©-	0-0- 0-0-	44.	W14x43	U W14x43	W14x43	- ++× - ++ ++			6'-0"
	200*	1 CM	W14x43	₩14x43	₩14×43	W21	W14x43	W2	20'-0"
0			• _ <u>W14x4</u> 3	₩14x43	W1 <u>4x43</u>	 			
		4	W14x43 \$	¥ W14x43	×				

Column drawing

HHS Connection

- Impressive strength to weight ratio
- Load transfer and ensuring structural stability

HSS bracings (Packer, Atlas Tube 2013)

CCE.OHO6

BUILDING ENVELOPE

- Fiber cement lap siding mitigates water ingress and reduces maintenance
- Rainscreen with air cavity for ventilation and water drainage
- Fiberglass cladding attachments minimize thermal bridging
- Mineral wool insulation is hydrophobic and thermally efficient
- Overall design prioritizes moisture management with thermal efficiency and sustainability

Exterior Wall Section

WATER RESOURCES

- Ductile iron pipe system
- Manages runoff from the parking lot and housing development
- Peak runoff is reduced using parking lot swales
- Swales also assist in water filtration
- Material choice and bioretention will help protect the existing stream from pollutants throughout the building lifecycle

Swale Drawing