Aerodynamics and Recovery

Members:

Anna Daul
Mikayla Farr
Hayden Ferrell

Objectives

- Design a safe and reliable recovery and ejection system to ensure mission success.

O Perform simulations to ensure proper stability margins throughout the flight.

- Design fins, nose cone, and parachutes for favorable aerodynamic characteristics.

Design Challenges

o Significant constraints were the weight of the rocket and the available space for the recovery system components

- Design for specified descent speeds as allowed by IREC
- Optimize fins for constantly changing variables to ensure rocket remained within stability margin allowed by IREC

Final Design

Fins

○ 4 trapezoidal fins with a double diamond cross-section
o Root Chord: 12 in.
O Tip Chord: 4.75 in.

- Span: 4.9 in.
- Sweep Angle: 60°

Nose Cone

- Von Karman Profile
o Length: 31.4 in.
O Outer Diameter: 6.4 in .
○ Fineness Ratio: 4.9
O Thickness: 0.05 in.

Final Design

Drogue Parachute: Annular
O Outer Diameter: 28.96 in. (2.41 ft)

Main Parachute: Toroidal

O Outer Diameter: 140.0 in . (11.67 ft)

Final Design

Recovery Harness

Testing Results

Drogue Parachute Descent Rate
O Rocket Descent Rate: ~ $80 \mathrm{ft} / \mathrm{s}$
O IREC: Between 75 and $150 \mathrm{ft} / \mathrm{s}$

Main Parachute Descent Rate

O Touchdown Velocity: ~ $20 \mathrm{ft} / \mathrm{s}$

- IREC: Less Than $30 \mathrm{ft} / \mathrm{s}$

Testing Results

Stability Simulations

- Stability Criteria: Must be between 1.5 and 6 calibers for the entire flight profile.
- Current Stability: The stability margin for the entire flight profile has a minimum value of 1.65 and a maximum value of 4.18 calibers.

Testing Results

Altitude Simulations

O Altitude Goal: 30,000 ft AGL

- Current Simulated Altitude: The current OpenRocket simulation for Spaceport America has an altitude of $33,936 \mathrm{ft}$ AGL with 10 MPH wind.

Testing Results

Ejection System

Date	Charge	Size	Shear Pins	Results
2/28/2020	Main Primary	5 g	4	Failed
2/28/2020	Drogue Primary	3 g	5	Failed
2/28/2020	Main Primary	6.5 g	4	Successful
2/28/2020	Drogue Primary	4.5 g	5	Successful
2/29/2020	Main Redundant	9.75 g	4	Successful
2/29/2020	Drogue Redundant	6.75 g	5	Successful

Testing Results

TeleMegas

Primary TeleMega, SN-4370

- Simulated Altitude: 33,650 ft
- Drogue Deployment: 32,900 ft
- Main Deployment Target: 1,499 ft
- Main Deployment Actual: 1,488 ft
- Simulated Speed: $52 \mathrm{ft} / \mathrm{s}$

Redundant TeleMega, SN-4373
O Simulated Altitude: 34,260 ft
o Drogue Deployment: 33,550 ft

- Main Deployment Target: 1,475 ft
- Main Deployment Actual: 1,468 ft
- Simulated Speed: $65 \mathrm{ft} / \mathrm{s}$

Recommendations

Ejection System

- Talk to Avionics early and determine responsibilities
o Familiarize yourself with AltOS and the TeleMega early on
- Perform ejection testing without TeleMegas to determine desired charge size
- Or with the TeleMega outside the rocket
- If possible, use old parachutes for ejection tests

Recovery System

- Repair parachutes with ripstop nylon tape rather than sewing patches
- Learn to sew early and practice

General Recommendations

- Do L1 \& L2 certifications early
- Do an L2 with dual-deployment
- And... Be safe!

