COLLEGE OF ENGINEERING

Occurrence and Fate of Antibiotic Resistant *E.coli* in **Oregon Wastewater Treatment Plants**

Marjan Khorshidi-Zadeh¹, Sue Yee Yiu¹ Tyler Radniecki¹, Joy Waite-Cusic², Tala Navab-Daneshmand¹

- ¹ School of Chemical, Biological, and Environmental Engineering, College of Engineering, Oregon State University
- ² Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University

BACKGROUND

- Due to substantial production and use of antibiotics, antibiotic-resistant bacteria emergence is a worldwide crisis.¹
- Antibiotic-resistant genes are present in some bacteria, and under the right conditions can be transferred between species.²
- The prevalence of Extended-Spectrum Betalactamase (ESBL) producing bacteria has increased over the last two decades; these bacteria are resistant to most beta-lactam antibiotics.³
- Infection with Multi-drug-resistant (MDR) bacteria decrease therapeutic options.⁴
- Wastewater treatment plants (WWTPs) serve as a reservoir that promotes antibiotic resistance and the release of antibiotic-resistant bacteria into the environment.⁵

RESEARCH OBJECTIVES

- Evaluate 17 WWTPs across Oregon for antibioticresistant *E. coli*
- Determine geographical and seasonal impact on antibiotic-resistant *E. coli* prevalence in WWTPs
- Characterize the fate of antibiotic-resistant *E.coli* in WWTPs
- Identify the proportion of *E.coli* isolates that produce ESBL

FUTURE WORK

- Collect samples during Summer 2020
- Determine the effect of physical and chemical properties on the prevalence of resistant and MDR *E.coli*
- Identify genes that encode ESBL production in ESBL producing *E.coli*

Table 1-Percentage of *E. coli* (*n* = 831) resistant to six classes of antibiotics

Antibiotic	% Resistant
Ampicillin	18.1
Tetracycline	13.2
Streptomycin	7.5
Sulfamethoxazole-Trimethoprim	6.4
Ciprofloxacin	2.3
Imipenem	0

Chemical, Biological, and Environmental Engineering

or 2, and 3 or more (MDR: multi-drug resistant) classes of antibiotics (n=831)

(MDR: multi-drug resistant) classes of antibiotics in different locations of wastewater treatment facilities across Oregon

Oregon State University

METHODS

- Wastewater influent, secondary, and effluent and biosolid were collected from 17 Oregon WWTPs between winter 2019 and summer 2020
- Presumptive *E.coli* were isolated from wastewater and biosolid samples
- The Standard CLSIM100 Disk Diffusion method was used to evaluate isolates for Antibiotic susceptibility 0
- ESBL production Ο
- Statistical analysis were performed using R

PRELIMINARY RESULTS

- Significantly higher prevalence of antibiotic resistant *E.coli* and MDR were found in winter.
- Significantly higher prevalence of antibiotic resistant *E.coli* were found in Western Oregon; results demonstrates the importance of population size (urban vs. rural communities)
- There was increased MDR in biosolids indicating that the fate of MDR is in biosolids.
- 12 isolates from all locations were identified as being ESBL producers.
- Most prevalent resistance is ampicillin, the oldest and most common class of antibiotics.
- No significant difference in disinfection efficiency between UV light and chlorination.

Geographical Impact on Antibiotic-Resistant E.coli

Figure 3. Percentage of antibiotic-resistant *E.coli* in western and eastern regions of Oregon, along with the overall population size of each region.

REFERENCES

- 1. Ventolaetal., P&T.2015.
- 2. Fernando et al., Trends Microbiol. 2000.
- 3. Blaak et al., Vet. 2014.
- 4. Loddenkemper et al., EUR Respir J. 2002.
- 5. Rizzo et al., Sci Total Environ. 2013.

ACKNOWLEDGEMENTS

This work is supported by the USDA National

Institute of Food and Agriculture, Agriculture and Food Research Initiative Competitive Program, Agriculture Economics and Rural Communities, grant number: 2018-67017-2763

