A MICROSCALE-BASED DEVICE FOR THE PROCESS INTENSIFICATION OF ALCOHOL EXTRACTION AND PHASE SEPARATION

Josiah Starr, Callen Guillory, Kaustubh Indane, Cameron Knopf

Objectives and project statement

- Feed stream 20% Isopropyl alcohol (IPA) in water
- Recover IPA through phase separation
- Compare conventional LLE to MMS LLE economics using best-case solvent
- Recycle solvent through solvent recovery

Figure 2 – MMS module scaling up capabilities

Preliminary Design Results

				Water Molar Flow in IPA Product
	Percent	Percent	Molar Flow Ratio	(kmol/hr)
MMS LLE	80.42%	98.62%	23.10	1.40
Conventional LLE	81.54%	96.53%	129.27	2.12

TOTAL US ENERGY CONSUMPTION Industrial 32% 45-55% of energy consumed is by separation processes Residential 21%

Figure 3 – US energy consumption by category¹

What is Multiphase-Microscale Separation (MMS)?

- Utilizes interfacial surface tension through capillary pressure gradients to achieve separation compared to traditional buoyancy driven LLE columns
- Device is a small flat plat (Figure 4) that can be scaled up (Figure 2) to meet demand

Value Statement

- Separation processes account for 45-555% of US energy consumption (Figure 3)
- MMS based separation require little to no energy consumption
- Significant opportunity to reduce CO₂ emissions

Figure 4 – MMS LLE unit: processes and size

Future work

- Economic analysis
 - Comparing CapEx and OpEx of conventional to MMS LLE
- lonic liquids as entrainer
 - Greener chemistry
 - Tunable properties
- Reducing solvent cost
 - Utilizing smaller O:A flow ratio to achieve optimal product specs

Citations: 1 Murnen, H. (2016). Separation processes with hope for purification energy efficiency. Retrieved May 20, 2021, from https://chemical-materials.elsevier.com/chemical-manufacturing-excellence/separation-processes-for-energy-efficiency/