
E l e c t r i c a l E n g i n e e r i n g a n d C o m p u t e r S c i e n c eC O L L E G E O F E N G I N E E R I N G

TIC-TAC-TOEING THE LINE

• One of the main balances that our language
needed to achieve was between ease of use and
expressiveness.

• The main goals are to teach core programming

concepts while also maintaining accessibility for
middle schoolers.

• The risk of allowing students to have too much
expressiveness is that they would not be able to

learn the language.

• If the language is too simple it would not keep
them engaged or let them to learn important
programming concepts.

CANDY LANDING ON A
SOLUTION

• We needed to produce a programming language
that is a steppingstone to more practical existing
language.

• Educators decided that Haskell would be he best

language for students to learn next and therefore
our language is like Haskell with a few key
differences that limit the language while making

it significantly simpler.

• We implemented our solution in Haskell using
bottom up parsing using the lexing and parsing
libraries Alex and Happy.

UNSCRABBLEING THE
PROBLEM

• The main idea behind this project is that
currently there is no easy way for middle
school students to be able to be

introduced to programming in a context
that they have seen before.

• Most programming languages are either
removed from anything that a student at

that age would have seen or deeply
related to math.

• Another issue with many programming
languages is that children feel

overwhelmed and discouraged by complex
programming languages.

• Current language that exist to introduce
programming language to younger

students are not related to more complex
programming languages used later and do
not lead to a good transition.

• This led to development of the idea that

there should be a programming language
that students can relate to as well as have
a enable good transition to more complex

languages.

• Some of the main concepts that are
lacking in these languages are functions,
and types. This will make it more difficult

for them to learn algorithms later in their
education.

• One concept that most students can relate
to are board games. Because of this

context that the students have this led us
to developing a programming language
that would allow students to describe

board games.

CODE IN SHEEP’S CLOTHING
Teaching a younger generation the fundamentals

of programming through a specialized language

focused on board games

CLIENT

Johannes Freischuetz –
freischj@oregonstate.edu

Ben Warschauer
warschab@oregonstate.edu

Fern Bostelman-Rinaldi

bostelmf@oregonstate.edu

Jackson Bizjak
bizjakj@oregonstate.edu

Tom Croll
crollt@oregonstate.edu

C S 41 B

CODENAMES

Martin Erwig, Ph.D.
Stretch Professor of Computer Science
eriwg@oregonstate.edu

Figure: The process of taking the board game language to Haskell

mailto:eriwg@oregonstate.edu

