COLLEGE OF ENGINEERING

Aircraft Specifications

Wingspan	4.51 m (≈ 15 ft)
Flight Mass	3.3 kg
Wing Area	1.09 m ²
Cruise Velocity	8 m/s (18 mph)
Stock Flight Time	25 mins
Anticipated Solar Flight Time	≈ 12 hours

Solar Specifications

	Peak Values 1000 w/m^2	Actual Values 600 w/m^2
Peak Voltage	29.37	32.4
Peak Current	5.79 A	2.32 A
Peak Power	169 W	75 W
Efficiency	23.1%	

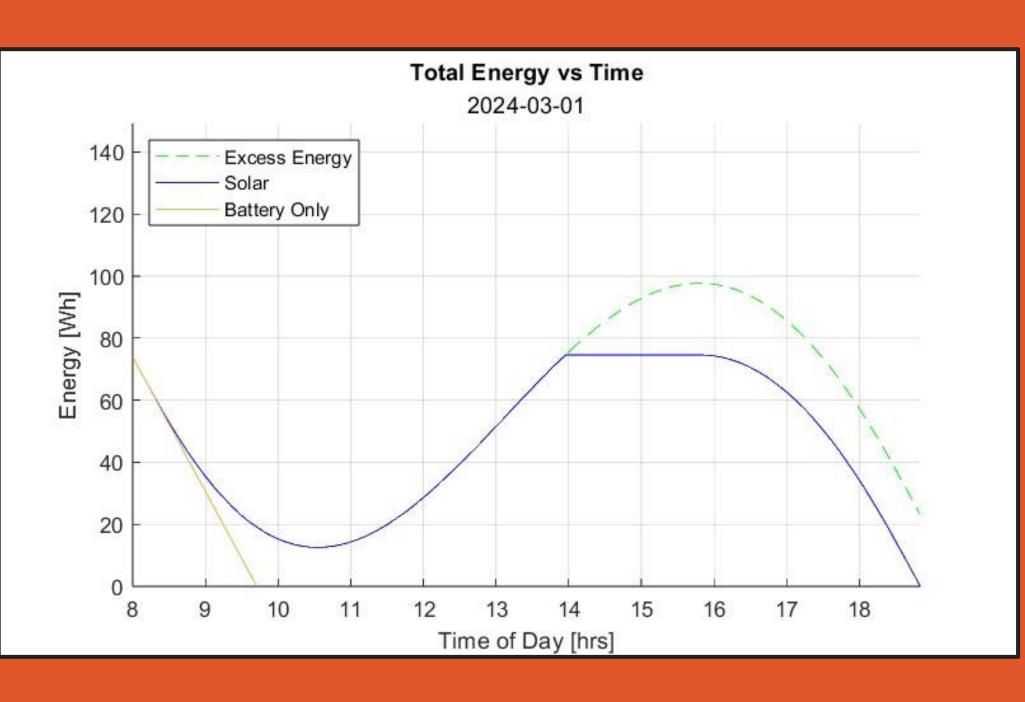


Fig 4: A MATLAB model was used to determine characteristics of the final aircraft and predict performance. Provided is a plot to predict flight on a certain day based off historical solar data.

Goal: extend the flight time of a hobby-scale aircraft from 25 minutes to 12 hours **Approach:** • Integrated solar system to maximize efficient energy capture

SOLAR A RPLANE

The 2023-2024 OSU Solar Airplane team is a capstone team made of 8 capstone members and 3 active volunteers. This is the second year of the project at OSU, and this year's team is proud to continue the legacy and progress made by last year's team.

Fig 1: Final configuration of aircraft (left) and aircraft test flight (right)

- Propeller efficiency optimization
- Wing extensions to increase aspect ratio and available space for solar panels

• **Solar System** - Provides constant power to charge batteries, operate motor & avionics system. Efficiency and fluctuations managed by two maximum power point trackers (MPPTs).

• **Pitot Tube -** Measures airspeed. Allows for more efficient aircraft operations, data collection, and improved model predictions.

• Wing Extension - Increasing wingspan allows for more solar panels and reduces complexity of building new wing. Practical solution improves aerodynamics, more power gen. & flight time.

• Semi Autonomous Flight - A semi-autonomous flight control system is integrated to provide active stabilization and reduce pilot workload. System holds altitude, airspeed, and heading.

• Folding Propeller - Increases gliding efficiency and enables belly landings. The motor controller stops the motor and freestream air naturally folds the propellor blades against the fuselage.

• Autopilot for data logging and reduced pilot workload for long endurance flights

Fig 2: Fabricating and testing solar panels

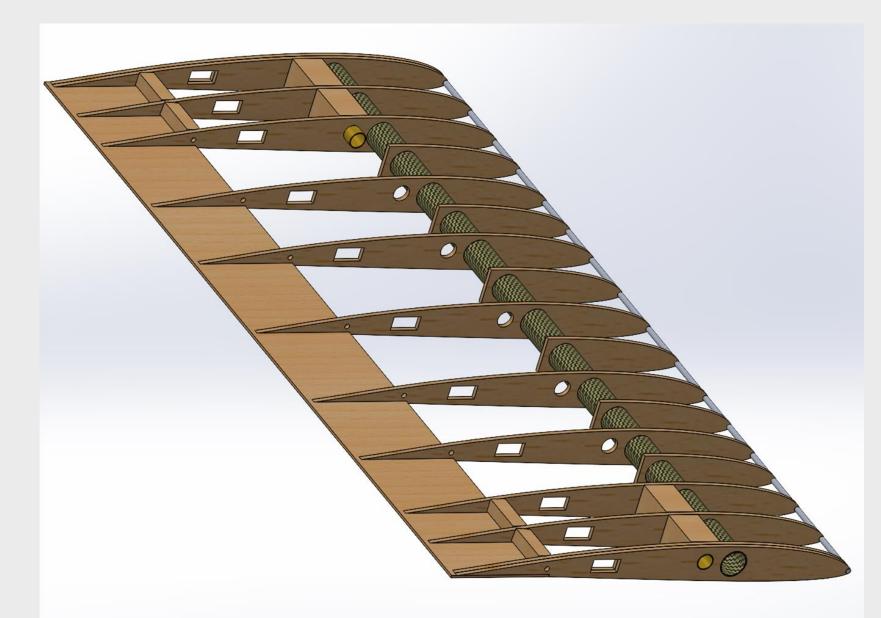


Fig 3: CAD model of Wing Extension

Team: AERO.06

SOLAR AIRPLANE 2023-2024

PROJECT SPONSORS

Technical Advisor Dr. Roberto Albertani

Pilot

Dave Patana

Course Instructor Prof. John Greeven