NEXT UP, HYDROGEN

- Nuclear energy is the largest carbon-free energy source in the United States.^{[1],[2]}
- Nuclear energy production methods are more reliable than renewable sources, allowing nuclear energy to supplement green energy.^[1]
- At times of low energy demand, unutilized thermal energy and power can be used to produce hydrogen.^{[3],[4]}
- Hydrogen in its molecular form, H₂ has a great capacity for energy-storage and industrial applications.^[5]
- Hydrogen fuel is currently produced as a byproduct of natural gas production or other processes that involve carbon.^[5]
- Hydrogen fuel production via nuclear power is considered a carbon-free process.^{[5],[9]}
- One way of producing hydrogen is through the Westinghouse Sulfur Cycle. This cycle uses an electrolysis cell combined with a sulfuric acid degradation reactor to break water down into hydrogen and oxygen.

Overview of Hydrogen Production Plant in Relation to Nuclear Reactor and Power Generation.^[8]

Chemical, Biological, and Environmental Engineering

PNK HYDROGEN ENERGY

Nuclear Hydrogen Formation Utilizing Thermochemical Hybridized Steam Electrolysis

Zamel Mohammad Alzamel, Matteo Xavier Garcia-Ortiz, and Koen Light

Process Flow Diagram (PFD) of Westinghouse Model-Based Hydrogen Production Plant.

TAKEAWAY RESULTS

Daily production output of 170 metric tons of H_2 , with operation ramp-up in the hours of 12am – 6am. • Original design incorporates one bayonet reactor and one proton-exchange membrane (PEM) fuel cell. For thermal decompositions above 1200 K, a nuclear reactor temperature above said temperature is necessary^[9]. For this process, the GT-MHR (Gas Turbine – Modular Helium Cooled Reactor) conceptual

nuclear reactor is considered.^[8]

• Final cost of produced hydrogen in the range of \$1.64/kg^[5] to \$3.85/kg^[9].

Hydrogen production plant will be located near areas like Philadelphia, by the Delaware River, and northern Illinois, near the Illinois and Mississippi Rivers.

no. 3 (2009)

CHE.12

Block Diagram Process Flowsheet with Chemical Species.

Reaction Kinetics ^[7]

 $H_2SO_4 (aq) \rightarrow H_2O (g) + SO_2 (g) + 1/2 O_2 (g) (1)$ $SO_2(aq) + 2 H_2O(l) \rightarrow H_2SO_4(aq) + H_2(g)$ (2)

Future Work

• Improve thermodynamic efficiency by reducing heat losses in system.

Continue to develop and evaluate alternative electrolysis technologies.

Evaluate material lifetime and degradation using process condition variation.

• Investigate long-term global economic impacts of development of this technology.

Consider methods to utilize additional green sources of energy in operations.

Acknowledgements

Dr. Nick AuYeung and Dr. Patrick Geoghegan Oregon State University College of Engineering, School of Chemical, Biological, and Environmental Engineering.

References

[1] "Advantages and Challenges of Nuclear Energy." Energy.gov, March 29, 2021.

[2] "Frequently Asked Questions (Faqs) - U.S. Energy Information Administration (EIA)." Frequently Asked Questions (FAQs) - U.S. Energy Information Administration (EIA). Acc [3]"Climate." Nuclear Energy Institute, April 3, 2022.

[3] News, Petro Industry. "What Are the Advantages of Hydrogen as a Fuel?" Petro Online, 2022. [4] "Hourly Electricity Consumption Varies throughout the Day and across Seasons." Homepage U.S. Energy Information Administration (EIA).

[5] Elder, Rachael, and Ray Allen. "Nuclear Heat for Hydrogen Production: Coupling a Very High/High Temperature Reactor to a Hydrogen Production Plant." Progress in Nuclear Energy 51,

[6] Pickard, Paul & Gelbard, Fred & Moore, Bob & Vernon, Milton & Parma, Ed & Besenbruch, Gottfried & Russ, Ben & Buckingham, Robert & Brown, Lloyd. (2003). II.J.1 Sulfur-Iodine Thermochemical Cycle.

[7] Corgnale, Claudio, Maximilian B. Gorensek, and William A. Summers. "Review of Sulfuric Acid Decomposition Processes for Sulfur-Based Thermochemical Hydrogen Production Cycles." Processes 8, no. 11 (October 30, 2020)

[8] Wang, Dongyun, Artem Khalatov, E Shi-Ju, Tetyana Donyk, and Oksana Shikhabutinova. "Thermodynamics of GT-MHR-250 Modular Nuclear Plant with Helium Reactor and Gas Turbine Based on the Complex Brayton Cycle." Thermal Science and Engineering Progress 39 (2023) [9] Jeong, Yong Hoon, and Mujid S. Kazimi. "Optimization of the Hybrid Sulfur Cycle for Nuclear Hydrogen Generation." Nuclear Technology 159, no. 2 (2007)