COLLEGE OF ENGINEERING

WATER RESOURCES

Biofiltration Swale

- Location: south of proposed site near detention pond
- Peak discharge: 0.414 cubic feet per second
- Length: 100 feet
- Treatment area width: 4 feet
- Design volume: 223.6 cubic feet
- Overflow riser with beehive rim and 4" perforated pipe outfall to detention pond

Proposed Biofiltration Swale

BUILDING ENVELOPE

Windows and Wall Section

- Double pane ballistic glass
- Argon gas installation
- Polyurethane sealant

Civil and Construction Engineering

PUBLIC SAFETY BUILDING OLD PORTLAND ROAD, ST. HELENS, OREGON

Building rendering of the Public Safety Building Project (rendering courtesy of Mackenzie Engineering)

PROJECT DESCRIPTION & OBJECTIVES

The client has requested the design of a public safety building and surrounding site improvements for a project site spanning approximately 2.3 acres and located along Old Portland Road in St. Helens, Oregon. The goal of the design is to propose a building that can house police department facilities while also serving as a community social hub. The Hard Rock Engineering team's objectives are to develop a cost-effective design that minimizes the structure's environmental impact, while also ensuring its safety and durability against design loads. To achieve a successful design solution, the team has collaborated and evaluated various alternatives and methods for all disciplines involved.

OVERALL SITE PLAN

Original drawing by Mackenzie Engineering

CE.PS.07

STRUCTURAL

Gravity Force Resisting System

• Controlling vertical load

- \circ Snow = 31.2 psf
- Ice = 23.8 psf*

Lateral Force Resisting System

- Wind load = 25 kips
- Seismic load = 193 kips • Steel single brace lateral resisting system • Steel tension only cross braces placed between upper and lower roof to resolve

Footing Design

- 12 inch by 12 inch column square footing • 1 foot depth
- 8 #4 rebar
- Gravel compacted fill above footing
- Shallow foundation with spread footing

Interior Column Footing