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Covalent Organic Frameworks (COFs) L

molecules through strong covalent bonds.

560,000 discrete structures hypothesized

computationally to date. An Application of Graph Neural Networks

Exceptional porosity affords exemplary
storage and separation of gasses.
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MATRIX FACTORIZATION & THE COLD START bR T s

« Applications include carbon capture, low

pressure fuel storage, cancer detection,
etc. An innovative approach to learning adsorption properties is the

recommender system approach.

? Fig 5. UMAP where each point represents a COF
colored by its N, adsorption.

We find that the learned vector
representation m¢ correlates well to
adsorption tasks, seen by the clusters of
COFs with similar uptake in Fig 5.

« Learns to predict adsorption by observing a partially complete target-
set, overcoming the need for hand crafted features. However, each

material requires 1 or more known targets to compute. 2|7
and only the molecular structure is khown? with the cold-start problem
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The adsorption properties of most COFs are MESSAGE PASSING NEURAL NETWORKS (M PN NS) .|SPR=0.78 ’
unknown. How do we know which are g
best suited for our application? We design and train an MPNN to predict uptakes of 16 different gasses. We train on a partially complete g .
. : set of adsorption tasks (6) and the molecular graph. Our model only requires the molecular graph as e o8
* Synthesis: COFs can be synthesized and input during inference, thus overcoming the cold start problem. E *
tested, but this is costly and inefficient. g
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Fig 4. Our MPNN Architecture, which learns a vector representation
of the COF me® that is then used to generate prediction y




